反応-拡散系における定常パルス解と進行パルス解の関係について
反应扩散系统中稳态脉冲解与行脉冲解的关系
基本信息
- 批准号:07640291
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
双安定な2成分系のactivator-inhibitor systemにおいて、ある物理パラメータ(特に、2成分の反応比、拡散比、2つの平衡解の安定度の比など)に関する進行波解、定住波解の大域的な構造と安定性を明らかにする事を目的とした。特異摂動法と分岐理論を駆使して、フロント進行波解とバック進行波解の大域的所在と安定性を示した。この状況もとで、あるパラメータの値に対して、同一速度を持つフロント進行波解とバック進行波解が共存している。このパラメータの値から新しい解、パルス進行波解が分岐する事を示した。さらに安定なフロント進行波解と安定なバック進行波解からのみ安定なパルス進行波解が分岐し、それ以外の組み合わせでは、不安定なパルス進行波解が分岐することで示した。定在波解との関係では、例えば、2世分の反応比を小さくしていくと、定在波解は不安定化し、最初に安定な脈動定在波解がHopf分岐し、次いで不安定なパルス進行波解が分岐すると考えられていたが、それは2つの平衡解の安定性の強さに依存しており、最初に安定なパルス進行波解が分岐する場合があることを示した。これは上記の結果と整合している。以上は局所的な性質である。大域的構造に関しては、池田勉氏(龍谷大学)との共同研究により、反応項を区分的一次関数で近似した場合は、上記の局所的な解が大域的に連結していることを示した。さらに、安定なパルス進行波解から、脈動進行波解がHopf分岐することもわかった。
The activator-inhibitor system of bistable two-component systems is characterized by the physical properties (especially, the ratio of reflection and dispersion of two-component systems, and the ratio of stability of two-component equilibrium solutions) of progressive wave solutions and stationary wave solutions in large domains. The special dynamical method and bifurcation theory are used to show the stability of the traveling wave solution. In this case, the traveling wave solution at the same speed is co-shifted. This is a new solution to the problem of separation between the two. The steady state traveling wave solution is divided into two groups: the steady state traveling wave solution and the unsteady state traveling wave solution. For example, when the ratio of the stationary wave solution to the stationary wave solution is small, when the stationary wave solution is unstable, when the stationary wave solution initially fluctuates, when the stationary wave solution is Hopf bifurcated, when the stationary wave solution is unstable, when the stationary wave solution is progressive, when the stationary wave solution is bifurcated, when the stationary wave solution is strongly dependent on the stability of the stationary wave solution, when the stationary wave solution initially fluctuates, when the progressive wave solution is bifurcated, when the stationary wave solution is progressive, when the stationary wave solution initially fluctuates, when the progressive wave solution bifurcates, when the stationary wave solution initially fluctuates, when the stationary wave solution is progressive, when the stationary wave solution bifurcates, when the stationary wave solution is progressive, when the stationary wave solution initially fluctuates, when the progressive wave solution bifurcates. The result of the above is integration. The above is the nature of the bureau. A joint study by Miki Ikeda (Tatsuya University) on the structure of large domains shows that there is an approximation between the structure of large domains and the structure of large domains. In addition, the steady state of the moving wave solution, the pulse of the moving wave solution, the Hopf bifurcation, and so on.
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hideo Ikeda: "Bifurcation of pulse waves from front and back waves in bistable reaction-diflusion systems" Proceedings of the China-Japan symposium on reactron-diflusion equations and their applications and computational aspects. (発表予定).
Hideo Ikeda:“双稳态反应扩散系统中前波和后波的脉冲波分叉”中日反应扩散方程及其应用和计算方面研讨会论文集(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Norio Yoshida: "Forced oscillatcons of nonlinear parabolic equations with functional arguments" Analysis. 15. 71-84 (1995)
Norio Yoshida:“带有函数参数的非线性抛物线方程的受迫振荡”分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hideo Ikeda: "Singular pulse waves bifurated from front and back waves in bistable reaction-diflusion systems" J.Method and Applications of Analysis. (発表予定).
Hideo Ikeda:“双稳态反应扩散系统中从前波和后波分离的奇异脉冲波”J.分析方法和应用(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiromasa Suzuki: "Stability of traveling waves and a relation between the Evans function and the SLEP equations" J.Reine Angew Math.(発表予定).
Hiromasa Suzuki:“行波的稳定性以及 Evans 函数和 SLEP 方程之间的关系”J.Reine Angew Math(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masaaki Suzuki: "A note on the Fatou set in complex projective space" Math J.of Toyama Univ.18. 179-193 (1995)
Masaaki Suzuki:“关于复杂射影空间中设置的 Fatou 的注释”Math J.of Toyama Univ.18。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
池田 榮雄其他文献
特異摂動理論とその応用
奇异摄动理论及其应用
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
伊藤 尚人;小川 知之;小川 知之;栄 伸一朗;S. -I. Ei;T. Asanuma;池田榮雄;池田榮雄;池田榮雄;池田 榮雄;栄 伸一郎;村川 秀樹;池田榮雄;H. Ikeda;H. Murakawa;栄 伸一郎;池田榮雄;村川 秀樹;栄 伸一郎;池田榮雄;村川 秀樹;池田榮雄;池田榮雄 - 通讯作者:
池田榮雄
Rigorous Verification of the crossed mapping condition for holomorphic dynamical systems
全纯动力系统交叉映射条件的严格验证
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
佐藤巌;三橋秀生;森田英章;池田 榮雄;T. Ogiwara;Zin Arai - 通讯作者:
Zin Arai
On derivatives and convexity of set-valued maps and optimality conditions in set optimization
关于集值图的导数和凸性以及集优化中的最优性条件
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
伊藤 尚人;小川 知之;小川 知之;栄 伸一朗;S. -I. Ei;T. Asanuma;池田榮雄;池田榮雄;池田榮雄;池田 榮雄;栄 伸一郎;村川 秀樹;池田榮雄;H. Ikeda;H. Murakawa;栄 伸一郎;池田榮雄;村川 秀樹;栄 伸一郎;池田榮雄;村川 秀樹;池田榮雄;池田榮雄;小川 知之;村川 秀樹;村川 秀樹;栄 伸一郎;D. Kuroiwa - 通讯作者:
D. Kuroiwa
A solution of parabolic free boundary problems by semilinear reaction-diffusion systems
半线性反应扩散系统抛物型自由边界问题的求解
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
伊藤 尚人;小川 知之;小川 知之;栄 伸一朗;S. -I. Ei;T. Asanuma;池田榮雄;池田榮雄;池田榮雄;池田 榮雄;栄 伸一郎;村川 秀樹;池田榮雄;H. Ikeda;H. Murakawa - 通讯作者:
H. Murakawa
Reaction-diffusion system approximation to degenerate parabolic equations and its andlication to numerical computations
简并抛物方程的反应扩散系统逼近及其在数值计算中的应用
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
伊藤 尚人;小川 知之;小川 知之;栄 伸一朗;S. -I. Ei;T. Asanuma;池田榮雄;池田榮雄;池田榮雄;池田 榮雄;栄 伸一郎;村川 秀樹;池田榮雄;H. Ikeda;H. Murakawa;栄 伸一郎;池田榮雄;村川 秀樹;栄 伸一郎;池田榮雄;村川 秀樹;池田榮雄;池田榮雄;小川 知之;村川 秀樹 - 通讯作者:
村川 秀樹
池田 榮雄的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('池田 榮雄', 18)}}的其他基金
保存量あるいは非局所項を持つ反応拡散系のパターンダイナミクス解明への新手法
一种阐明具有守恒量或非局部项的反应扩散系统模式动力学的新方法
- 批准号:
24K06864 - 财政年份:2024
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
3成分反応拡散系における余次元2の中心多様体縮約の深化
三组分反应扩散系统中余维2中心流形约简的深化
- 批准号:
19K03618 - 财政年份:2019
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
多次元領域における内部遷移層をもった定常解の存在と安定性について
多维区域内含过渡层稳态解的存在性及稳定性
- 批准号:
08640261 - 财政年份:1996
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
反応-拡散方程式系におけるパルス解の大域的構造について
反应扩散方程组脉冲解的全局结构
- 批准号:
06640299 - 财政年份:1994
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
反応-拡散方程式系における界面のダイナミクスの研究
反应扩散方程组界面动力学研究
- 批准号:
05640255 - 财政年份:1993
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
非局所反応拡散方程式がつくるパターンと積分核の形状との関係
非局部反应扩散方程创建的模式与积分核形状之间的关系
- 批准号:
24K06877 - 财政年份:2024
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
エントロピー法による被食者捕食者型反応拡散方程式系の侵入現象と伝播現象の解明
用熵法阐明捕食者反应扩散方程组中的入侵和传播现象
- 批准号:
24K06817 - 财政年份:2024
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
特異摂動法の新しい理論と応用ー細胞極性に関する反応拡散方程式モデルの数理解析ー
奇异摄动法新理论及应用-细胞极性反应扩散方程模型的数学分析-
- 批准号:
24K06845 - 财政年份:2024
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
二重臨界の場合を含む整数階・非整数階反応拡散方程式の時間局所可解性と解の収束条件
整数阶和非整数阶反应扩散方程的时间局部可解性和解收敛条件,包括双临界情况
- 批准号:
24KJ2048 - 财政年份:2024
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
非局所反応拡散方程式の大域的解構造の解明と楕円関数の応用
非局部反应扩散方程全局解结构的阐明及椭圆函数的应用
- 批准号:
22K03378 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
非局所反応拡散方程式に現れる空間パターンの時間変化の解析
非局部反应扩散方程中出现的空间模式的时间变化分析
- 批准号:
21J10036 - 财政年份:2021
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
非線形境界条件を伴う反応拡散方程式系の数学解析
具有非线性边界条件的反应扩散方程组的数学分析
- 批准号:
20J11425 - 财政年份:2020
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
速く増大する非線形項を持つ非整数階反応拡散方程式の初期値問題
非线性项快速增加的分数阶反应扩散方程的初值问题
- 批准号:
20J11985 - 财政年份:2020
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
ネットワーク上および全空間上の反応拡散方程式の解構造
网络和整个空间上反应扩散方程的解结构
- 批准号:
19K14574 - 财政年份:2019
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
反応拡散方程式系によって生成される界面運動と伝播の研究
反应扩散方程组产生的界面运动和传播的研究
- 批准号:
19K14602 - 财政年份:2019
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists