Representation Theoretic Study of Two Dimensional Quantum Field Theory

二维量子场论的表示理论研究

基本信息

  • 批准号:
    14204003
  • 负责人:
  • 金额:
    $ 24.04万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2005
  • 项目状态:
    已结题

项目摘要

We studied the construction of the conformal field theories associated to Vertex Operator Algebra(V.O.A.) satisfying Zhu's C_2-finiteness condition.In order to construct the conformal field theories we defined universal enveloping algebra associated to V.O.A.satisfying Zhu's C_2-finiteness condition, and analyzed structure of Abelian categories constituted of modules of this algebra in more detail. These Abelian categories are Nothern and Artin, but not semi-simple.We gave an expression of Zhu algebra associated V.O.A.using enveloping algebra of V.O.A., and gave necessary and sufficient condition of the semi-simplicity of the Abelian categories using Zhu algebra.Using above results, we constructed coherent sheaves constituting of conformal blocks over moduli spaces of genus 0 N-pointed stable curves, and showed that they have D-module structures with regular singularities along the boundary of the moduli spaces.By analyzing of bi-module structure of enveloping algebra in further detail, we succeeded the construction of the Dx-module constituted conformal blocks over moduli spaces of genus g N-pointed stable curves, the formulation of the factorization properties of the coherent sheaves along the boundary of the moduli spaces. We are now preparing the paper.We are studying the so-called W(p) algebra satisfying Zhu's C_2-finiteness condition. These algebra are typical examples such that the Abelian categories are not semi-simple. We are now making detailed study of the Abelian categories, and Fusion product of conformal blocks, modular properties of genus 1 conformal blocks. Further more there are some nice relationships between representation theories of quantum groups at root of unity.
我们研究了与顶点算子代数(V.O.A.)有关的共形场论的构造。为了构造满足朱的C_2-有限条件的共形场论,我们定义了满足朱的C_2-有限条件的泛包络代数,并详细分析了该代数的模所构成的阿贝尔范畴的结构。这些Abelian范畴是Nothern和Artin,但不是半单的.我们利用V.O.A.的包络代数给出了伴随V.O.A.的朱代数的一个表达式,并给出了利用朱代数的Abelian范畴是半单的充要条件.利用上述结果,我们构造了亏格为0的N点稳定曲线的模空间上的共形块的凝聚层,并证明了它们在模空间的边界上具有正则奇异性的D-模结构.通过对包络代数的双模结构的进一步分析,我们得到了一些新的结果.我们成功地构造了亏格为g个N点稳定曲线的模空间上的Dx-模构成的共形块,得到了模空间边界上凝聚层的因式分解性质的公式。我们现在正在准备论文,我们正在研究满足朱的C_2-有限条件的所谓的W(P)代数。这些代数是阿贝尔范畴不是半单的典型例子。我们正在对Abel范畴、保形块的融合积、亏格1的保形块的模性质进行详细的研究。此外,在单位根量子群的表示理论之间也有一些很好的联系。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topological strings and Nekrasov's formulas
  • DOI:
    10.1088/1126-6708/2003/12/006
  • 发表时间:
    2003-10
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    T. Eguchi;H. Kanno
  • 通讯作者:
    T. Eguchi;H. Kanno
Conformal field theories associated to regular chiral vertex operator algebras, I: Theories over the projective line
  • DOI:
    10.1215/s0012-7094-04-12831-3
  • 发表时间:
    2002-06
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    K. Nagatomo;A. Tsuchiya
  • 通讯作者:
    K. Nagatomo;A. Tsuchiya
Conformal field theories associated to regular chiral vertex operator algebras I
与正则手性顶点算子代数相关的共形场论 I
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Nagatomo;A.Tsuchiya
  • 通讯作者:
    A.Tsuchiya
T.Arakawa: "Vanishing of cohomology associated to quantized Drinfeld-Sokolov reduction"International Mathematics Research Notices. no.15. 729-767 (2004)
T.Arakawa:“与量子化德林菲尔德-索科洛夫约简相关的上同调消失”国际数学研究通知。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Symplectic fillings of the link of simple elliptic singularities
简单椭圆奇点连接的辛填充
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ohta;Hiroshi;K.Ono
  • 通讯作者:
    K.Ono
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUCHIYA Akihiro其他文献

TSUCHIYA Akihiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUCHIYA Akihiro', 18)}}的其他基金

Study of Promoting dialogue System between Victims/Bereaved families and Responsible party
促进受害人/家属与责任方对话制度的研究
  • 批准号:
    15K12965
  • 财政年份:
    2015
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Construction of Conformal field theory based on Representation theory of Vertex Operator Algebra
基于顶点算子代数表示论的共形域论构建
  • 批准号:
    22540010
  • 财政年份:
    2010
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study of Transformation of School Conflict and Construction of Education ADR in Education System Reform Period
教育体制改革时期学校冲突转化与教育ADR构建研究
  • 批准号:
    22730003
  • 财政年份:
    2010
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A Sociolegal Study for Construction of School Dispute Resolution Systems
学校纠纷解决体系构建的社会法学研究
  • 批准号:
    19730005
  • 财政年份:
    2007
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
On the study of two dimensional quantum field theory by the methodof representation theory
论用表示论方法研究二维量子场论
  • 批准号:
    18540078
  • 财政年份:
    2006
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation Theoretic Study of Two Dimensional Quantum Field Theory
二维量子场论的表示理论研究
  • 批准号:
    11440020
  • 财政年份:
    1999
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
two dimensional quantum field theory and representation theory
二维量子场论与表示论
  • 批准号:
    09304021
  • 财政年份:
    1997
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

Application of Mirror extension of vertex operator algebra using Hopf algebra theory
Hopf代数理论在顶点算子代数镜像扩展中的应用
  • 批准号:
    16F16020
  • 财政年份:
    2016
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
EAPSI: Vertex Operator Algebra Theory
EAPSI:顶点算子代数理论
  • 批准号:
    1015741
  • 财政年份:
    2010
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Fellowship Award
Construction of Conformal field theory based on Representation theory of Vertex Operator Algebra
基于顶点算子代数表示论的共形域论构建
  • 批准号:
    22540010
  • 财政年份:
    2010
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of Orbifold Theory on Vertex Operator Algebra
顶点算子代数轨道理论研究
  • 批准号:
    22654002
  • 财政年份:
    2010
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Constructions of the moonshine vertex operator algebra by using orbifold theories
利用轨道理论构造moonshine顶点算子代数
  • 批准号:
    20549004
  • 财政年份:
    2008
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vertex Operator Algebraと有限単純群
顶点算子代数和有限单群
  • 批准号:
    06221210
  • 财政年份:
    1994
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Mathematical Sciences: Representation Theory of Vertex Operator Algebra
数学科学:顶点算子代数的表示论
  • 批准号:
    9303374
  • 财政年份:
    1993
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了