Representation Theoretic Study of Two Dimensional Quantum Field Theory
二维量子场论的表示理论研究
基本信息
- 批准号:14204003
- 负责人:
- 金额:$ 24.04万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied the construction of the conformal field theories associated to Vertex Operator Algebra(V.O.A.) satisfying Zhu's C_2-finiteness condition.In order to construct the conformal field theories we defined universal enveloping algebra associated to V.O.A.satisfying Zhu's C_2-finiteness condition, and analyzed structure of Abelian categories constituted of modules of this algebra in more detail. These Abelian categories are Nothern and Artin, but not semi-simple.We gave an expression of Zhu algebra associated V.O.A.using enveloping algebra of V.O.A., and gave necessary and sufficient condition of the semi-simplicity of the Abelian categories using Zhu algebra.Using above results, we constructed coherent sheaves constituting of conformal blocks over moduli spaces of genus 0 N-pointed stable curves, and showed that they have D-module structures with regular singularities along the boundary of the moduli spaces.By analyzing of bi-module structure of enveloping algebra in further detail, we succeeded the construction of the Dx-module constituted conformal blocks over moduli spaces of genus g N-pointed stable curves, the formulation of the factorization properties of the coherent sheaves along the boundary of the moduli spaces. We are now preparing the paper.We are studying the so-called W(p) algebra satisfying Zhu's C_2-finiteness condition. These algebra are typical examples such that the Abelian categories are not semi-simple. We are now making detailed study of the Abelian categories, and Fusion product of conformal blocks, modular properties of genus 1 conformal blocks. Further more there are some nice relationships between representation theories of quantum groups at root of unity.
我们研究了与顶点算子代数(V.O.A.)有关的共形场论的构造。为了构造满足朱的C_2-有限条件的共形场论,我们定义了满足朱的C_2-有限条件的泛包络代数,并详细分析了该代数的模所构成的阿贝尔范畴的结构。这些Abelian范畴是Nothern和Artin,但不是半单的.我们利用V.O.A.的包络代数给出了伴随V.O.A.的朱代数的一个表达式,并给出了利用朱代数的Abelian范畴是半单的充要条件.利用上述结果,我们构造了亏格为0的N点稳定曲线的模空间上的共形块的凝聚层,并证明了它们在模空间的边界上具有正则奇异性的D-模结构.通过对包络代数的双模结构的进一步分析,我们得到了一些新的结果.我们成功地构造了亏格为g个N点稳定曲线的模空间上的Dx-模构成的共形块,得到了模空间边界上凝聚层的因式分解性质的公式。我们现在正在准备论文,我们正在研究满足朱的C_2-有限条件的所谓的W(P)代数。这些代数是阿贝尔范畴不是半单的典型例子。我们正在对Abel范畴、保形块的融合积、亏格1的保形块的模性质进行详细的研究。此外,在单位根量子群的表示理论之间也有一些很好的联系。
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topological strings and Nekrasov's formulas
- DOI:10.1088/1126-6708/2003/12/006
- 发表时间:2003-10
- 期刊:
- 影响因子:5.4
- 作者:T. Eguchi;H. Kanno
- 通讯作者:T. Eguchi;H. Kanno
Conformal field theories associated to regular chiral vertex operator algebras, I: Theories over the projective line
- DOI:10.1215/s0012-7094-04-12831-3
- 发表时间:2002-06
- 期刊:
- 影响因子:2.5
- 作者:K. Nagatomo;A. Tsuchiya
- 通讯作者:K. Nagatomo;A. Tsuchiya
Conformal field theories associated to regular chiral vertex operator algebras I
与正则手性顶点算子代数相关的共形场论 I
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K.Nagatomo;A.Tsuchiya
- 通讯作者:A.Tsuchiya
T.Arakawa: "Vanishing of cohomology associated to quantized Drinfeld-Sokolov reduction"International Mathematics Research Notices. no.15. 729-767 (2004)
T.Arakawa:“与量子化德林菲尔德-索科洛夫约简相关的上同调消失”国际数学研究通知。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Symplectic fillings of the link of simple elliptic singularities
简单椭圆奇点连接的辛填充
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Ohta;Hiroshi;K.Ono
- 通讯作者:K.Ono
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUCHIYA Akihiro其他文献
TSUCHIYA Akihiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUCHIYA Akihiro', 18)}}的其他基金
Study of Promoting dialogue System between Victims/Bereaved families and Responsible party
促进受害人/家属与责任方对话制度的研究
- 批准号:
15K12965 - 财政年份:2015
- 资助金额:
$ 24.04万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Construction of Conformal field theory based on Representation theory of Vertex Operator Algebra
基于顶点算子代数表示论的共形域论构建
- 批准号:
22540010 - 财政年份:2010
- 资助金额:
$ 24.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of Transformation of School Conflict and Construction of Education ADR in Education System Reform Period
教育体制改革时期学校冲突转化与教育ADR构建研究
- 批准号:
22730003 - 财政年份:2010
- 资助金额:
$ 24.04万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A Sociolegal Study for Construction of School Dispute Resolution Systems
学校纠纷解决体系构建的社会法学研究
- 批准号:
19730005 - 财政年份:2007
- 资助金额:
$ 24.04万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On the study of two dimensional quantum field theory by the methodof representation theory
论用表示论方法研究二维量子场论
- 批准号:
18540078 - 财政年份:2006
- 资助金额:
$ 24.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation Theoretic Study of Two Dimensional Quantum Field Theory
二维量子场论的表示理论研究
- 批准号:
11440020 - 财政年份:1999
- 资助金额:
$ 24.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
two dimensional quantum field theory and representation theory
二维量子场论与表示论
- 批准号:
09304021 - 财政年份:1997
- 资助金额:
$ 24.04万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Application of Mirror extension of vertex operator algebra using Hopf algebra theory
Hopf代数理论在顶点算子代数镜像扩展中的应用
- 批准号:
16F16020 - 财政年份:2016
- 资助金额:
$ 24.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
EAPSI: Vertex Operator Algebra Theory
EAPSI:顶点算子代数理论
- 批准号:
1015741 - 财政年份:2010
- 资助金额:
$ 24.04万 - 项目类别:
Fellowship Award
Construction of Conformal field theory based on Representation theory of Vertex Operator Algebra
基于顶点算子代数表示论的共形域论构建
- 批准号:
22540010 - 财政年份:2010
- 资助金额:
$ 24.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of Orbifold Theory on Vertex Operator Algebra
顶点算子代数轨道理论研究
- 批准号:
22654002 - 财政年份:2010
- 资助金额:
$ 24.04万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Constructions of the moonshine vertex operator algebra by using orbifold theories
利用轨道理论构造moonshine顶点算子代数
- 批准号:
20549004 - 财政年份:2008
- 资助金额:
$ 24.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vertex Operator Algebraと有限単純群
顶点算子代数和有限单群
- 批准号:
06221210 - 财政年份:1994
- 资助金额:
$ 24.04万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Mathematical Sciences: Representation Theory of Vertex Operator Algebra
数学科学:顶点算子代数的表示论
- 批准号:
9303374 - 财政年份:1993
- 资助金额:
$ 24.04万 - 项目类别:
Standard Grant