Representation Theoretic Study of Two Dimensional Quantum Field Theory
二维量子场论的表示理论研究
基本信息
- 批准号:11440020
- 负责人:
- 金额:$ 4.1万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I. Conformed field theory associated with vertex operator algebraIn the middle of 80's, Borcherds, Frenkel, etc. founded the theory of chiral vertex operator algebra using the operator product expansion in the conformal field theory and apply it to study Monster in finity group theory.But there has not studied conformal field theory associated with vertex operator algebra except case of minimal series of Virasoro algebra and integral representation of Affine Lie algebra.In the collaboration with Kiyokazu Nagatomo at Osaka University, I defined the universal enveloping algebra and zero mod algebra associated with chiral vertex algebra, and reformulated the representation theory of vertex operator algebra. And under the regularity condition we developed the theory the conformed blocksP^1 and showed finite dimensionality, definition of KZ connection and family factorization properties of conformal blocks along the boundary of Moduli spaces.These results was announsed at the meeting at UCLA in November 2001. We wrote a paper on this subject.II. Topological field theory and their deformation with mass parameterWe developed the period theory of rational elliptic surfaces as extension of N=2 super Yang Mills theory developed by Seiberg - Witten in 1994. The period integral of the Mordel - Weil lattice along the meromorphic 2-form which has order 1 pole on the fiber at ∞ on P^1, can be regarded as mass parameters. We showed that monodromy of this period map can be described by E_8^<(1)> type elliptic Weyl group. And we showed the relation ship between this theory and deformation theory of E_8^<(1)> simply elliptic singularity by Kyoji Saito.
在80年代中期,S、博尔切尔德、弗伦克尔等人利用共形场论中的算符乘积展开创立了手征顶点算符代数理论,并将其应用于研究有限群理论中的怪物。但除了Virasoro代数的极小级数和仿射Lie代数的积分表示的情况外,还没有研究与顶点算符代数相关的共形场论。我与大阪大学的Kiyokazu Nagtopo合作,定义了与手征顶点代数相关的泛包络代数和零模代数,并重新阐述了顶点算符代数的表示理论。在正则性条件下,我们发展了共形块P^1的理论,并证明了沿模空间边界的共形块的有限维、KZ联络的定义和族分解性质.这些结果在2001年11月的UCLA会议上公布.我们发展了有理椭圆曲面的周期理论,作为Seiberg-Witten于1994年提出的N=2超杨Mills理论的推广。在P^1的∞处沿纤维上具有1阶极点的亚纯2形式的Model-Weil晶格的周期积分可视为质量参数。证明了该周期映射的单调性可以用E_8^<;(1)>;型椭圆Weyl群来刻画。并由Kyoji Saito证明了该理论与E_8^<;(1)>;简单椭圆奇点变形理论之间的关系。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Arakawa, T.Suzuki, A.Tsuchiya: "Degenerate double affine Hecke algebras and conformal field theory"Topological Field Theory, Primitive Forms and Related Topics ; the proceedings of the 38^<th> Taniguchi symposium, Ed. M. Kashiwara et al.. 1-34 (1998)
T.Arakawa、T.Suzuki、A.Tsuchiya:《退化双仿射 Hecke 代数和共形场论》拓扑场论、本原形式及相关主题;
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUCHIYA Akihiro其他文献
TSUCHIYA Akihiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUCHIYA Akihiro', 18)}}的其他基金
Study of Promoting dialogue System between Victims/Bereaved families and Responsible party
促进受害人/家属与责任方对话制度的研究
- 批准号:
15K12965 - 财政年份:2015
- 资助金额:
$ 4.1万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Construction of Conformal field theory based on Representation theory of Vertex Operator Algebra
基于顶点算子代数表示论的共形域论构建
- 批准号:
22540010 - 财政年份:2010
- 资助金额:
$ 4.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of Transformation of School Conflict and Construction of Education ADR in Education System Reform Period
教育体制改革时期学校冲突转化与教育ADR构建研究
- 批准号:
22730003 - 财政年份:2010
- 资助金额:
$ 4.1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A Sociolegal Study for Construction of School Dispute Resolution Systems
学校纠纷解决体系构建的社会法学研究
- 批准号:
19730005 - 财政年份:2007
- 资助金额:
$ 4.1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On the study of two dimensional quantum field theory by the methodof representation theory
论用表示论方法研究二维量子场论
- 批准号:
18540078 - 财政年份:2006
- 资助金额:
$ 4.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation Theoretic Study of Two Dimensional Quantum Field Theory
二维量子场论的表示理论研究
- 批准号:
14204003 - 财政年份:2002
- 资助金额:
$ 4.1万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
two dimensional quantum field theory and representation theory
二维量子场论与表示论
- 批准号:
09304021 - 财政年份:1997
- 资助金额:
$ 4.1万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Application of Mirror extension of vertex operator algebra using Hopf algebra theory
Hopf代数理论在顶点算子代数镜像扩展中的应用
- 批准号:
16F16020 - 财政年份:2016
- 资助金额:
$ 4.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
EAPSI: Vertex Operator Algebra Theory
EAPSI:顶点算子代数理论
- 批准号:
1015741 - 财政年份:2010
- 资助金额:
$ 4.1万 - 项目类别:
Fellowship Award
Construction of Conformal field theory based on Representation theory of Vertex Operator Algebra
基于顶点算子代数表示论的共形域论构建
- 批准号:
22540010 - 财政年份:2010
- 资助金额:
$ 4.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of Orbifold Theory on Vertex Operator Algebra
顶点算子代数轨道理论研究
- 批准号:
22654002 - 财政年份:2010
- 资助金额:
$ 4.1万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Constructions of the moonshine vertex operator algebra by using orbifold theories
利用轨道理论构造moonshine顶点算子代数
- 批准号:
20549004 - 财政年份:2008
- 资助金额:
$ 4.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vertex Operator Algebraと有限単純群
顶点算子代数和有限单群
- 批准号:
06221210 - 财政年份:1994
- 资助金额:
$ 4.1万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Mathematical Sciences: Representation Theory of Vertex Operator Algebra
数学科学:顶点算子代数的表示论
- 批准号:
9303374 - 财政年份:1993
- 资助金额:
$ 4.1万 - 项目类别:
Standard Grant