Special linear systems on compact Riemann surfaces

紧凑黎曼曲面上的特殊线性系统

基本信息

  • 批准号:
    15540173
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

We study classification problems for compact Riemann surfaces through the existence of meromorphic functions on them and conformal invariants.1.Let C be a compact Riemann surface of genus g and W^r_d(C) be a subvariety which consists of the image of effective divisors of degree d and dimension r in the Jacobian variety J(C). In 1992 Coppens-Kim-Martens proved that if the gonality gon(C) of C is odd, then dim W^r_d(C) 【less than or equal】 d - 3r holds for any d 【less than or equal】 g - 1. In 1996, Martens gave a characterization of C and W^r_d(C) in case dim W^r_d(C) = d - 3r with d 【less than or equal】 g - 2. In 1999, Kato-Keem gave a characterization of C and W^r_d(C) in case dim W^r_d(C) = d - 3r - 1 with d 【less than or equal】 g - 4. In 2001, Kato remarked that even in the case gon(C) is even, if C doesn't have an involution, dim W^r_d(C) 【less than or equal】 d - 3r holds, too. Then, one has a characterization of C and W^r_d(C) in cases dim W^r_d(C) = d - 3r with d 【less than or equal】 g - 2 and dim W^r_d(C) = d - 3r - 1 with d 【less than or equal】 g - 4. It is one of the main results in our study supported by Grant-in-Aid for Scientific Research (C)(2), (2000-2001) entitled "A study on meromorphic functions on compact Riemann surfaces" #12640180. In this project, we almost succeeded a characterization of C and W^r_d(C) in cases dim W^r_d(C) = d - 3r - 2.2.Let F_q be a finite fields with q elements and C ⊂ F^n_q be a linear [n,k,d]_q code. Let n_q(k,d) be the minimum of the code lengths for fixed k,d. There is an upper bound of n_q(k,d) known as the Griesmer bound. In this project, we show that for some range of d's, n_q (k,d) is equal to the Griesmer bound minus 1.
1.设C是亏格为g的紧黎曼曲面,W^r_d(C)是由雅可比簇J(C)中d次有效因子和维度r的像组成的子簇。1992年,Coppens-Kim-Marten证明了如果C的平方数(C)是奇数,则dim W^r_d(C)[小于等于]d-3r对任意d[小于或等于]g-1成立。1996年,Marten给出了当dim W^r_d(C)=d-3r且d[小于或等于]g-2时C和W^r_d(C)的特征。Kato-Keem给出了DIMW^Rd(C)=d-3r-1且d[小于等于]g-4时C和W^Rd(C)的刻划。2001年,Kato指出,即使在Gon(C)为偶数的情况下,如果C没有对合,则DimW^Rd(C)[小于或等于]d-3r也成立。然后,在d[小于或等于]g-2时,得到了dim W^r_d(C)=d-3r且d[小于或等于]g-2时C和W^r_d(C)=d-3r,以及d[小于或等于]g-4时C和W^r_d(C)=d-3r-1的特征。这是我们在科学研究助学金(C)(2),(2000年-2001年)支持的题为“紧黎曼曲面上的亚纯函数的研究”#12640180的研究中的主要结果之一。在这个项目中,我们在dim W^r_d(C)=d-3r-2.2的情形下几乎成功地刻画了C和W^r_d(C)。设F_q是具有q个元素的有限域,C⊂F^n_q是线性[n,k,d]_q码。设n_q(k,d)是固定k,d的最小码长,n_q(k,d)有一个上界,称为Griesmer界。在这个项目中,我们证明了对于d‘s的某个范围,n_q(k,d)等于Griesmer界-1。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regions of variability for convex functions
  • DOI:
    10.1002/mana.200310449
  • 发表时间:
    2006-11
  • 期刊:
  • 影响因子:
    1
  • 作者:
    H. Yanagihara
  • 通讯作者:
    H. Yanagihara
Nonexistence of projective codes of dimension 5 which attain the Griesmer bound for q^4 - 2q^2 - 2q + 1 【less than or equal】 d 【less than or equal】 q^4 - 2q^2 - q
不存在达到 q^4 - 2q^2 - 2q + 1 【小于或等于】 d 【小于或等于】 q^4 - 2q^2 - q 的 Griesmer 界的 5 维射影码
Nonexistence of projective codes of dimension 5 which attain the Griesmer bound for q^4-2q^2-2q+1<d<q^4-2q^2-q
不存在达到 q^4-2q^2-2q 的 Griesmer 界的 5 维投影码 1<d<q^4-2q^2-q
Weierstrass points with first non-gap four on a double covering of a hyperelliptic curve
在超椭圆曲线的双重覆盖上具有第一个非间隙 4 的 Weierstrass 点
On the variety W^r_d(C) whose dimension is at least d-3r-2
在维数至少为 d-3r-2 的变体 W^r_d(C) 上
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATO Takao其他文献

KATO Takao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATO Takao', 18)}}的其他基金

Analysis of metabolic remodeling and mitochondrial function in heart failure
心力衰竭代谢重塑和线粒体功能分析
  • 批准号:
    24790790
  • 财政年份:
    2012
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Studies on special linear series and Weierstrass points on compact Riemann surfaces
紧黎曼曲面上特殊线性级数和Weierstrass点的研究
  • 批准号:
    23540209
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Special linear systems on compact Riemann surfaces
紧凑黎曼曲面上的特殊线性系统
  • 批准号:
    19540186
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Special linear systems on Riemann surfaces
黎曼曲面上的特殊线性系统
  • 批准号:
    17540160
  • 财政年份:
    2005
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Meromorphic functions on compact Riemann surfaces
紧黎曼曲面上的亚纯函数
  • 批准号:
    12640180
  • 财政年份:
    2000
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Meromorphic functions on Riemann surfaces, Weierstrass points
黎曼曲面、Weierstrass 点上的亚纯函数
  • 批准号:
    10440051
  • 财政年份:
    1998
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
On the Luroth semigroup of smooth Plane curves
关于光滑平面曲线的 Luroth 半群
  • 批准号:
    06044261
  • 财政年份:
    1994
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Overseas Scientific Survey.
PVD Film Method for Measuring Grinding Temperature
测量研磨温度的 PVD ​​薄膜法
  • 批准号:
    04650108
  • 财政年份:
    1992
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

New perspective of the sigma functions of algebraic curves and its applications to integrable systems
代数曲线西格玛函数的新视角及其在可积系统中的应用
  • 批准号:
    21K03289
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Descent of algebraic curves
代数曲线下降
  • 批准号:
    438058067
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Research Grants
Study on the arithmetic of algebraic curves and its applications using computers
代数曲线算法及其应用的计算机研究
  • 批准号:
    20K03517
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Algebraic Curves and Their Moduli: Degenerations and Combinatorics
职业:代数曲线及其模:简并和组合学
  • 批准号:
    1844768
  • 财政年份:
    2019
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Continuing Grant
Study on special algebraic curves over fields of positive characteristic via computer algebra
正特征域上特殊代数曲线的计算机代数研究
  • 批准号:
    19K21026
  • 财政年份:
    2018
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
The solution of Hurwitz's problem through Galois covers of algebraic curves and study on curves on K3 surfaces
通过代数曲线的伽罗瓦覆盖解决赫尔维茨问题并研究K3曲面上的曲线
  • 批准号:
    18K03228
  • 财政年份:
    2018
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic geometry related to the rigidity of hyperbolic algebraic curves
与双曲代数曲线刚性相关的算术几何
  • 批准号:
    18K03239
  • 财政年份:
    2018
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Families of algebraic curves with CM, multiple gamma functions, Stark conjecture and related number-theoretic problems
CM 代数曲线族、多重伽玛函数、斯塔克猜想和相关数论问题
  • 批准号:
    17K05183
  • 财政年份:
    2017
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic geometry of the moduli spaces of algebraic curves and abelian varieties, and its applications
代数曲线和阿贝尔簇模空间的算术几何及其应用
  • 批准号:
    17K05179
  • 财政年份:
    2017
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic curves for coding theory and their properties
编码理论的代数曲线及其性质
  • 批准号:
    17K05344
  • 财政年份:
    2017
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了