Meromorphic functions on compact Riemann surfaces

紧黎曼曲面上的亚纯函数

基本信息

  • 批准号:
    12640180
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

We study classification problems for compact Riemann surfaces through the existence of meromorphic functions on them and conformal invariants.1. Let C be a compact Riemann surface of genus g and W^γ_d(C) be a subvariety which consists of the image of effective divisors of degree d and dimension γ in the Jacobian variety J (C). In 1992 Coppens-Kim-Martens proved that if the gonality gon(C) of C is odd, then dim W^γ_d(C) 【less than or equal】 d - 3γ holds for any d 【less than or equal】 g - 1. In 1996, Martens gave a characterization of C and W^γ_d(C) in case dim W^γ_d(C) = d - 3γ held for d 【less than or equal】 g - 2. In 1999, Kato-Keem gave a characterization of C and W^γ_d(C) in case dim W^γ_d(C) = d - 3γ - 1 held for d 【less than or equal】 g - 4. It is one of the main results in our study supported by Grant-in -Aid for Scientific Research (B)(2), (2000-2001) entitled "A study on meromorphic functions and Weierstrass points" #10440051. In the present study, first, we remark that even in … More the case gon(C) is even, if C doesn't have an involution, dim W^γ_d(C) 【less than or equal】 d - 3γ holds, too. Then, we give a chracterization of C and W^γ_d(C) in case dim W^γ_d(C) = d - 3γ, d 【less than or equal】 g - 2 and dim W^γ_d(C) = d - 3γ - 1, d 【less than or equal】 g - 4.2. We study projective systems concerned with the error-correcting coding theory, in particular the algebraic geometry codes. Let S be a set in the projective space over a finite field with q elements. Then, we prove that S is a union of 2 (resp. 3) subspaces provided that the numbers of points which intersect with hyperplanes satisfy some conditions. It is an improvement of a result of Homma-Kim-Yoo.We study a characterization of the Fermat curve in terms of total inflection points on smooth plane curve. The Fermat curve of degree d has 3d total inflection points. We consider the converse and prove that if a smooth plane curve of degree 5 has an automorphism of order 5 and 15 total inflection points, then it is birationally equivalent to the Fermat curve. Less
通过亚纯函数和共形不变量的存在性研究了紧致黎曼曲面的分类问题.设C是亏格为g的紧致Riemann曲面,W^γ_d(C)是Jacobian簇J(C)中d次和维数为γ的有效因子的像所构成的子簇. 1992年,Coppens-Kim-Martens证明了如果C的角形(C)是奇数,则dim W^γ_d(C)[小于或等于] d - 3γ对任何d [小于或等于] g - 1成立。1996年,Martens给出了当dim W^γ_d(C)= d - 3γ时C和W^γ_d(C)的一个刻划,其中d [小于或等于] g - 2. 1999年,Kato-Keem给出了当dim W^γ_d(C)= d - 3γ - 1且d [小于或等于] g - 4时C和W^γ_d(C)的一个刻划.这是我们的研究的主要结果之一,资助的科学研究补助金(B)(2),(2000-2001)题为“亚纯函数和Weierstrass点的研究”#10440051。在本研究中,首先,我们注意到,即使在 ...更多信息 在gon(C)为偶数的情况下,如果C没有对合,dim W^γ d(C)[小于或等于] d - 3γ也成立.在dim W^γ_d(C)= d - 3γ,d ≤ g - 2和dim W^γ_d(C)= d-3γ - 1,d ≤ g - 4.2的情形下,给出了C和W^γ_d(C)的一个特征.我们研究了与纠错编码理论有关的射影系统,特别是代数几何码。设S是q元有限域上射影空间中的集合。然后,我们证明了S是2的并(分别为)。3)子空间,条件是与超平面相交的点的数目满足某些条件。本文改进了Homma-Kim-Yoo的一个结果,利用光滑平面曲线上的全拐点来刻画Fermat曲线。d次费马曲线有3d个总拐点。我们考虑相反的情况,并证明了如果一个光滑的5次平面曲线有一个5阶自同构和15个总拐点,那么它是双有理等价的Fermat曲线。少

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yanagi, K.: "Entropy of fuzzy measure"Proc.24th Symp.on Information Theory and its Appl.. 131-134 (2001)
Yanagi, K.:“模糊测度的熵”Proc.24th Symp.on Information Theory and its Appl.. 131-134 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Masumoto: "Hyperbolic lengths and conformal embeddings of Riemann surfaces"Israel J.Math.. 116. 77-92 (2000)
M.Masumoto:“黎曼曲面的双曲长度和共形嵌入”Israel J.Math.. 116. 77-92 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masumoto, M.: "Extremal lengths of homology classes on compact Riemann surfaces"Nonlinear Anal.. 47. 5491-5500 (2001)
Masumoto, M.:“紧致黎曼曲面上同源类的极值长度”非线性分析.. 47. 5491-5500 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masumoto M: "Extremal lengths of homology classes on compact Riemann surfaces"Nonlinear Anal. 47. 5491-5500 (2001)
Masumoto M:“紧凑黎曼曲面上同源类的极值长度”非线性肛门。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Miyoshi: "Direction and curvature of the cracks in two-dimensional elastic bodies"Japan Journal of Industrial and Applied Mathematics. 12-2. 295-307 (2000)
T.Miyoshi:“二维弹性体中裂纹的方向和曲率”日本工业应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATO Takao其他文献

KATO Takao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATO Takao', 18)}}的其他基金

Analysis of metabolic remodeling and mitochondrial function in heart failure
心力衰竭代谢重塑和线粒体功能分析
  • 批准号:
    24790790
  • 财政年份:
    2012
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Studies on special linear series and Weierstrass points on compact Riemann surfaces
紧黎曼曲面上特殊线性级数和Weierstrass点的研究
  • 批准号:
    23540209
  • 财政年份:
    2011
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Special linear systems on compact Riemann surfaces
紧凑黎曼曲面上的特殊线性系统
  • 批准号:
    19540186
  • 财政年份:
    2007
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Special linear systems on Riemann surfaces
黎曼曲面上的特殊线性系统
  • 批准号:
    17540160
  • 财政年份:
    2005
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Special linear systems on compact Riemann surfaces
紧凑黎曼曲面上的特殊线性系统
  • 批准号:
    15540173
  • 财政年份:
    2003
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Meromorphic functions on Riemann surfaces, Weierstrass points
黎曼曲面、Weierstrass 点上的亚纯函数
  • 批准号:
    10440051
  • 财政年份:
    1998
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
On the Luroth semigroup of smooth Plane curves
关于光滑平面曲线的 Luroth 半群
  • 批准号:
    06044261
  • 财政年份:
    1994
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Overseas Scientific Survey.
PVD Film Method for Measuring Grinding Temperature
测量研磨温度的 PVD ​​薄膜法
  • 批准号:
    04650108
  • 财政年份:
    1992
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

New perspective of the sigma functions of algebraic curves and its applications to integrable systems
代数曲线西格玛函数的新视角及其在可积系统中的应用
  • 批准号:
    21K03289
  • 财政年份:
    2021
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Descent of algebraic curves
代数曲线下降
  • 批准号:
    438058067
  • 财政年份:
    2020
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Research Grants
Study on the arithmetic of algebraic curves and its applications using computers
代数曲线算法及其应用的计算机研究
  • 批准号:
    20K03517
  • 财政年份:
    2020
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Algebraic Curves and Their Moduli: Degenerations and Combinatorics
职业:代数曲线及其模:简并和组合学
  • 批准号:
    1844768
  • 财政年份:
    2019
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Continuing Grant
Study on special algebraic curves over fields of positive characteristic via computer algebra
正特征域上特殊代数曲线的计算机代数研究
  • 批准号:
    19K21026
  • 财政年份:
    2018
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
The solution of Hurwitz's problem through Galois covers of algebraic curves and study on curves on K3 surfaces
通过代数曲线的伽罗瓦覆盖解决赫尔维茨问题并研究K3曲面上的曲线
  • 批准号:
    18K03228
  • 财政年份:
    2018
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic geometry related to the rigidity of hyperbolic algebraic curves
与双曲代数曲线刚性相关的算术几何
  • 批准号:
    18K03239
  • 财政年份:
    2018
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Families of algebraic curves with CM, multiple gamma functions, Stark conjecture and related number-theoretic problems
CM 代数曲线族、多重伽玛函数、斯塔克猜想和相关数论问题
  • 批准号:
    17K05183
  • 财政年份:
    2017
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic curves for coding theory and their properties
编码理论的代数曲线及其性质
  • 批准号:
    17K05344
  • 财政年份:
    2017
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic geometry of the moduli spaces of algebraic curves and abelian varieties, and its applications
代数曲线和阿贝尔簇模空间的算术几何及其应用
  • 批准号:
    17K05179
  • 财政年份:
    2017
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了