Special linear systems on Riemann surfaces

黎曼曲面上的特殊线性系统

基本信息

  • 批准号:
    17540160
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

We study classification problems for compact Riemann surfaces through the existence of meromorphic functions on them and conformal invarinats.1. Let C be a compact Riemann surface of genus g. The minimal degree of pencils on is said to be the gonality of C and denoted by gon(C). This quantity is a conformal invarinat. It is well-known that 2 【less than or equal】 gon(C) 【less than or equal】 [(g + 3)/2]. On the other hand, let s_2(C) be the minimal degree of simple nets on C. While s_2(C) satisfies (3 + √<8g+1>)/2 【less than or equal】s_2(C) 【less than or equal】 g + 2, these two quantities relate strongly. As a matter of fact, If gon(C) = 2, then s_2(C) = g + 2 and vice versa. Furthermore, in case g 【greater than or equal】 6, that C is elliptic-hyperelliptic if and only if s_2(C) = g + 1. In this project, we show that for almost all g, there is no C such that s_2(C) = g. Moreover, in the case where C is 4-gonal of genus 9 with the scrollar invariant (4,1,1), we decided s_2(C). This case seems to be the most complicated case among 4-gonal cases.2. Let F_q be a finite fields with q elements and C ⊂F^n_q be a linear [n,k,d]q code. Let n_q(k,d) be the minimum of the code lengths for fixed k, d. There is an upper bound of n_q(k,d) known as the Griesmer bound. In this project, we show that for some range of d's, n_q(k,d) (for k = 5,6) is equal to the Griesmer bound minus 1.As a generalization of the notion of the Weierstrass point, one can define the notion of Weierstrass n-tuple by choosing appropriate n points. Using the pure gaps of Weierstrass n-tuple, we obtained an estimate of the minimal distance of the Goppa codes.
通过亚纯函数和共形不动点的存在性研究了紧致黎曼曲面的分类问题.设C是亏格为g的紧致Riemann曲面。上的铅笔的最小次数称为C的角性,记为gon(C)。这个量是共形不变量。众所周知,2 [小于或等于] gon(C)[小于或等于] [(g + 3)/2]。另一方面,设s_2(C)是C上简单网的最小度。当s_2(C)满足(3 +<$<8 g +1>)/2 [小于或等于]s_2(C)[小于或等于] g + 2时,这两个量密切相关。事实上,如果gon(C)= 2,则s_2(C)= g + 2,反之亦然。当g ≥ 6时,C是椭圆-超椭圆的当且仅当s_2(C)= g + 1.在这个项目中,我们证明了对几乎所有的g,不存在C使得s_2(C)= g。此外,当C是亏格9的4-阶数,且具有涡卷不变量(4,1,1)时,我们确定s_2(C).这个病例似乎是四个病例中最复杂的一个。设F_q是一个q元有限域,C ∈ F^n_q是一个线性[n,k,d]q码.设n_q(k,d)为固定k,d的码长中的最小值。n_q(k,d)存在一个上界,称为Griesmer界。本文证明了对于d的一定范围,n_q(k,d)(k = 5,6)等于Griesmer界减1。作为Weierstrass点概念的推广,我们可以通过选择适当的n个点来定义Weierstrass n元组的概念。利用Weierstrass n元组的纯间隔,得到了Goppa码的最小距离的一个估计。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the minimum length of some linear codes of dimension 5
关于一些维数为5的线性码的最小长度
Regions of variability for convex functions
  • DOI:
    10.1002/mana.200310449
  • 发表时间:
    2006-11
  • 期刊:
  • 影响因子:
    1
  • 作者:
    H. Yanagihara
  • 通讯作者:
    H. Yanagihara
The Complete Determination of the Minimum Distance of Two-Point Codes on a Hermitian Curve
  • DOI:
    10.1007/s10623-005-4599-y
  • 发表时间:
    2006-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Homma;S. Kim
  • 通讯作者:
    M. Homma;S. Kim
On the minimu length of some linear codes of dimension 6
关于一些维数为6的线性码的最小长度
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheon;E.;Kato;T.
  • 通讯作者:
    T.
Codes from curves with total inflection points
来自具有总拐点的曲线的代码
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Katsuya Ishizaki;Shunsuke Morosawa;Mitsunori Yakou;梅津健一郎;Cicero Carvalho
  • 通讯作者:
    Cicero Carvalho
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATO Takao其他文献

KATO Takao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATO Takao', 18)}}的其他基金

Analysis of metabolic remodeling and mitochondrial function in heart failure
心力衰竭代谢重塑和线粒体功能分析
  • 批准号:
    24790790
  • 财政年份:
    2012
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Studies on special linear series and Weierstrass points on compact Riemann surfaces
紧黎曼曲面上特殊线性级数和Weierstrass点的研究
  • 批准号:
    23540209
  • 财政年份:
    2011
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Special linear systems on compact Riemann surfaces
紧凑黎曼曲面上的特殊线性系统
  • 批准号:
    19540186
  • 财政年份:
    2007
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Special linear systems on compact Riemann surfaces
紧凑黎曼曲面上的特殊线性系统
  • 批准号:
    15540173
  • 财政年份:
    2003
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Meromorphic functions on compact Riemann surfaces
紧黎曼曲面上的亚纯函数
  • 批准号:
    12640180
  • 财政年份:
    2000
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Meromorphic functions on Riemann surfaces, Weierstrass points
黎曼曲面、Weierstrass 点上的亚纯函数
  • 批准号:
    10440051
  • 财政年份:
    1998
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
On the Luroth semigroup of smooth Plane curves
关于光滑平面曲线的 Luroth 半群
  • 批准号:
    06044261
  • 财政年份:
    1994
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Overseas Scientific Survey.
PVD Film Method for Measuring Grinding Temperature
测量研磨温度的 PVD ​​薄膜法
  • 批准号:
    04650108
  • 财政年份:
    1992
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

New perspective of the sigma functions of algebraic curves and its applications to integrable systems
代数曲线西格玛函数的新视角及其在可积系统中的应用
  • 批准号:
    21K03289
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Descent of algebraic curves
代数曲线下降
  • 批准号:
    438058067
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grants
Study on the arithmetic of algebraic curves and its applications using computers
代数曲线算法及其应用的计算机研究
  • 批准号:
    20K03517
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Algebraic Curves and Their Moduli: Degenerations and Combinatorics
职业:代数曲线及其模:简并和组合学
  • 批准号:
    1844768
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Study on special algebraic curves over fields of positive characteristic via computer algebra
正特征域上特殊代数曲线的计算机代数研究
  • 批准号:
    19K21026
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
The solution of Hurwitz's problem through Galois covers of algebraic curves and study on curves on K3 surfaces
通过代数曲线的伽罗瓦覆盖解决赫尔维茨问题并研究K3曲面上的曲线
  • 批准号:
    18K03228
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic geometry related to the rigidity of hyperbolic algebraic curves
与双曲代数曲线刚性相关的算术几何
  • 批准号:
    18K03239
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Families of algebraic curves with CM, multiple gamma functions, Stark conjecture and related number-theoretic problems
CM 代数曲线族、多重伽玛函数、斯塔克猜想和相关数论问题
  • 批准号:
    17K05183
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic geometry of the moduli spaces of algebraic curves and abelian varieties, and its applications
代数曲线和阿贝尔簇模空间的算术几何及其应用
  • 批准号:
    17K05179
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic curves for coding theory and their properties
编码理论的代数曲线及其性质
  • 批准号:
    17K05344
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了