極小部分多様体の微分幾何学的研究
最小子流形的微分几何研究
基本信息
- 批准号:05740043
- 负责人:
- 金额:$ 0.58万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Encouragement of Young Scientists (A)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 1994
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
3次元ユークリッド空間内の螺旋面の一般化として、4次元定曲率空間内の測地線を葉とする葉層構造をもつ極小超曲面を構成した。また、3次元ユークリッド空間内の回転面の一般化として、一般の次元の双曲空間内の極小超曲面で直交群の積O(p)×O(q)の自然な作用で不変なものを構成し、それらの無限遠点における挙動(漸近境界)による特徴付けを与えた。さらに、名古屋工業大学の前田定広氏とともに複素射影空間内の実超曲面を研究し、Ricci曲率の共変微分の長さに関する不等式を与え、等号が成立つのは測地的超球に限ることを示した。そして、複素射影空間内の実超曲面で、構造ベクトル場xi方向のRicciテンソルのLie微分が消えるものをすべて決定した。その後、複素射影空間内の実超曲面に関して、接空間の正則部分空間上で概接触構造phi型作要素Aが可換であるような非等質の例をたくさん構成し、その部分的な特徴付けを与えた。さらに、種々のテンソルの可換性から非等質なものまで含めた複素射影空間内の実超曲面の特徴付けを得た。そして、複素射影空間P^n内のKahler部分多様体への螺旋面の一般化として、P^1からP^<n-2>への正則写像から得られるKahler曲面を考察し、そのスカラー曲率による全測地的P^2と二次曲面Q^2の特徴付けを与えた。最後に、複素射影空間P^n内のruled Kahler部分多様体の合同類と複素Grassmann多様体内の正則曲線の合同類が1:1に対応することを示し、それぞれのスカラー曲率とガウス曲率の関係を調べた。
Generalization of helicoids in 3-D space and formation of minimal hypersurfaces in 4-D space with constant curvature Generalization of recurrent surfaces in three-dimensional hyperbolic spaces and the natural action of minimal hypersurfaces in general three-dimensional hyperbolic spaces and products of orthogonal groups O(p)×O(q) do not exist in the construction of the infinite points and in the motion (asymptotic boundary) of the characteristic equations. A study of hypersurfaces in complex prime projective spaces and an inequality for the length of differential equations of Ricci curvature are presented. In this paper, we discuss the structure of the hypersurface in the complex projective space. A hypersurface in a complex prime projective space is related to a regular part of a joint space. A contact structure phi type is used as an element A. A commutative example of non-equivalence is used to construct a hypersurface in a complex prime projective space. The commutativity of a complex hypersurface in a complex prime projective space is obtained. A generalization of helical surfaces of Kahler partial polyhedrons in a complex prime projective space P^n is obtained. A study of the characteristics of a completely <n-2>geodesic quadratic surface P ^2 and Q ^2 is presented. Finally, the relation between the curvature and the curvature of a regular curve in a complex prime Grassmann manifold and the contract class of a ruled Kahler partial manifold in a complex prime projective space P^n is adjusted.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Makoto Kimura: "Mimmal hypersurfaces foliated by geodesics of 4-climensional space forms" Tokyo J.Math.16. 241-260 (1993)
Makoto Kimura:“由四维空间形式的测地线形成的最小超曲面”Tokyo J.Math.16。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
木村 真琴其他文献
Space of geodesics in hyperbolic spaces and Lorentz numbers
双曲空间中的测地线空间和洛伦兹数
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
M.Arkowitz;H.Oshima;J.Strom;Takuya Kitamoto;木村 真琴 - 通讯作者:
木村 真琴
木村 真琴的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('木村 真琴', 18)}}的其他基金
Submanifold theory related to the twistor space of quaternionic symmetric spaces
与四元对称空间扭量空间相关的子流形理论
- 批准号:
20K03575 - 财政年份:2020
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
極小部分多様体の微分幾何学
最小子流形的微分几何
- 批准号:
09740050 - 财政年份:1997
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
多様体とその部分多様体の微分幾何学的研究
流形及其子流形的微分几何研究
- 批准号:
01740014 - 财政年份:1989
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
部分多様体の微分幾何学的研究
子流形的微分几何研究
- 批准号:
62740012 - 财政年份:1987
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
定曲率空間における非線形楕円型方程式の正値球対称解の一意性および分岐構造の研究
常曲率空间非线性椭圆方程正值球对称解的唯一性及分岔结构研究
- 批准号:
18K03387 - 财政年份:2018
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
定曲率空間内の離散化された平均曲率一定曲面の構成
常曲率空间中常平均曲率离散曲面的构造
- 批准号:
14J03154 - 财政年份:2014
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
定曲率空間における不変な等温面と一様分離曲面
常曲率空间中的不变等温面和均匀分离面
- 批准号:
18654027 - 财政年份:2006
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Exploratory Research
定曲率空間内の曲面の無限次元リー群による構成の研究
常曲率空间无限维李群构造曲面的研究
- 批准号:
14740053 - 财政年份:2002
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
定曲率空間内の曲面に対する無限次元群作用の研究
常曲率空间曲面上无限维群作用研究
- 批准号:
12740051 - 财政年份:2000
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
定曲率空間形内の平均曲率一定曲面
等曲率空间形式的等平均曲率曲面
- 批准号:
09740051 - 财政年份:1997
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
区分的定曲率空間の幾何学
分段常曲率空间的几何
- 批准号:
07640125 - 财政年份:1995
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
3次元定曲率空間の中の平均曲率一定の曲面について
关于3维常曲率空间中具有常平均曲率的曲面
- 批准号:
03740009 - 财政年份:1991
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
定曲率空間の部分多様体
常曲率空间的子流形
- 批准号:
60740049 - 财政年份:1985
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
定曲率空間から定曲率空間への極小等長写像
从常曲率空间到常曲率空间的最小等距映射
- 批准号:
57740056 - 财政年份:1982
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)