Ultra-Highly-Parallel Arithmetic and Logic Circuits and Their Multiple-Valued Integration

超高并行算术逻辑电路及其多值集成

基本信息

项目摘要

Highly parallel hardware algorithms based on new data representation and circuit technology are key issues to develop VLSI processors in deep submicron geometry. Local computability and parallelism are one of the most important factors to reduce the critical delay path which determines processor performance.In this research project, multiple-valued redundant encoding method for parallel hardware algorithms were investigated together with the multiple-valued circuit technology. Our concept is that linearlity is fully utilized to make systematic design feasible. Linear combinational circuits are constructed by adders and coefficient multipliers over GF (p).Let us assume that the specifications are given by symbol-level operations. A linear circuit for a unary operation can be always transformed to a highly parallel circuit whose output depends on only 2 input-digits by the matrix transformation called the similar transformation. If all representation matrices are equal each other in k-ar … More y operations, we can obtain consistent sparce matrices for K representation matrices. A symmetrical operation is such a class of operations. However, we cannot always linearize every k-ary specification. To solve the problem, we introduce multiplicated recundant symbols by assigning multiple-valued code vertices to one symbol. A sufficient condition for the symbol-level linearlity is derived to make the redundant multiple-valued code assignment.Extension of the above design method is also discussed in a class of non-linear combinational circuits based on Reed-Muller expansion. If we can obtain a matrix representation of a combinational circuit with a formulation of the product of a constant matrix and variable vectors, design of a highly parallel circuit can be attributed to find a sparce constant matrix. Such class of the combinational circuits is more general, so it will be very useful for the design of practical k-ary operations such as an adder and a multiplier.Another aspect of this research is low-power high performance multiple-valued integrated circuits. A new current-mode multiple-valued MOS integrated circuit is proposed with higher driving capability in comparison with the conventional binary and multiple-valued digital circuits. Moreover, an effective current-source control technique is found which leads to low-power high-speed multiple-valued threshold logic operations. This new circuit technology will be effectively employed for the highly parallel arithmetic and logic circuits developed in this project. Less
基于新数据表示和电路技术的高度平行的硬件算法是开发深subsicron几何形状中VLSI处理器的关键问题。本地计算和并行性是减少决定处理器性能的关键延迟路径的最重要因素之一。在这项研究项目中,研究了对并行硬件算法的多价值冗余编码方法与多价值电路技术一起研究了。我们的概念是,线性充分利用可使系统设计可行。线性组合电路由GF(P)上的加法器和有能力的乘数构建。LET我们假设规格是由符号级操作给出的。一个单一操作的线性电路可以始终转换为高度平行的电路,该电路仅取决于2个输入数字,即矩阵变换称为相似的转换。如果所有表示矩阵在k-ar中彼此平等……更多的操作,我们可以为K代表物品获得一致的宽松物品。对称操作就是这样的操作。但是,我们不能总是将每个K-ARY规范线性化。为了解决问题,我们通过将多价值代码顶点分配给一个符号来引入多价值的回外符号。得出符号级线性的足够条件是导致冗余多价值代码分配。上述设计方法的扩展还可以在基于Reed-Muller扩展的一类非线性组合电路中讨论。如果我们可以获得具有恒定矩阵和可变矢量乘积的组合电路的矩阵表示,则可以将高度平行电路的设计归因于找到备用的恒定矩阵。这样的组合电路类别更为笼统,因此对于实用的K-ARY操作(例如加法器和乘数)的设计将非常有用。这项研究的另一个方面是低功能高性能多价值集成电路。与传统的二进制和多价值数字电路相比,提出了一个新的电流模式多值MOS集成电路,具有更高的驱动能力。此外,发现有效的电流源控制技术,该技术导致低功率高速多价阈值逻辑操作。这种新的电路技术将有效地用于该项目中开发的高度平行算术和逻辑电路。较少的

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
中島雅美: "高並列線形多項演算回路実現のための十分条件とその応用" 1994年電子情報通信学会秋季大会. D-80. 85-85 (1994)
Masami Nakajima:“实现高度并行线性多项式运算电路的充分条件及其应用”1994 年 IEICE D-80 (1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Hanyu: "Low-Power Multiple-Valued Current-Mode Integrated Circuit with Current-Source Control and Its Application" Proc.Asia and South Pacific Design Automation Conference 1997. 413-418 (1997)
T.Hanyu:“具有电流源控制的低功耗多值电流模式集成电路及其应用”Proc.Asia and South Pacific Design Automation Conference 1997. 413-418 (1997)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
亀山 充隆: "キガスケールシステムオンチップに向けての知能集積システムの展望" 電子情報通信学会誌. 78. 187-194 (1995)
Mitsutaka Kameyama:“面向千兆级片上系统的智能集成系统的展望”电子、信息和通信工程师学会杂志 78. 187-194 (1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
渡辺充博: "分割理論と分枝限定法に基づく高並列演算回路の設計" 平成6年電気関係学会東北支部連合大会講演論文集. 2D2. 130-130 (1994)
Mitsuhiro Watanabe:“基于分区理论和分支定界法的高度并行算术电路的设计”1994年电气工程学会东北分会会议记录130-130(1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Nakajima: "Design of Highly Parallel Circuits Using EXOR Gates for Symmetrical Logic Operations" Proceedings IFIP WG 10.5 Workshop on Applications of the Reed-Muller Expansion in Circuit Design. 308-313 (1995)
M.Nakajima:“使用异或门进行对称逻辑运算的高度并行电路设计”论文集 IFIP WG 10.5 电路设计中里德-穆勒展开式应用研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAMEYAMA Michitaka其他文献

KAMEYAMA Michitaka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAMEYAMA Michitaka', 18)}}的其他基金

Multiple-Valued Reconfigurable VLSI Based on Adaptively Autonomous Operation
基于自适应自主操作的多值可重构VLSI
  • 批准号:
    23656230
  • 财政年份:
    2011
  • 资助金额:
    $ 3.71万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Optimal VLSI Design for a Highly-Safe Intelligent Vehicle Based on a System Integration Theory
基于系统集成理论的高安全智能汽车超大规模集成电路优化设计
  • 批准号:
    17300009
  • 财政年份:
    2005
  • 资助金额:
    $ 3.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of VLSI Processor Chip Family for Highly-Safe Intelligent Vehicles Based on Optimal Design Mythologies
基于优化设计神话的高安全智能汽车VLSI处理器芯片系列开发
  • 批准号:
    12555119
  • 财政年份:
    2000
  • 资助金额:
    $ 3.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a Chip Family for Ultra-Highly-Parallel Multiple-Valued Integrated Circuits and Its Applications
超高并行多值集成电路芯片族的研制及其应用
  • 批准号:
    09558025
  • 财政年份:
    1997
  • 资助金额:
    $ 3.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
High-Level Synthesis of High-Performance VLSI Processors for Intelligent Integrated System
智能集成系统高性能VLSI处理器的高水平综合
  • 批准号:
    09450162
  • 财政年份:
    1997
  • 资助金额:
    $ 3.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on Multiple-Valued VLSI Processors for a Highly Safe Intelligent Vehicle
高安全智能汽车多值VLSI处理器研究
  • 批准号:
    07558151
  • 财政年份:
    1995
  • 资助金额:
    $ 3.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ultra-Parallel and Ultra-High-Speed Architecture for Ultimate Integration
超并行、超高速架构,实现终极集成
  • 批准号:
    07248102
  • 财政年份:
    1995
  • 资助金额:
    $ 3.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Development of VLSI Processors for Robot Control with Ultra-High Performance in the Arithmetic Delay
超高性能算术延迟机器人控制VLSI处理器的开发
  • 批准号:
    04555076
  • 财政年份:
    1992
  • 资助金额:
    $ 3.71万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)
Study on Post-Binary ULSI Sstems
后二元ULSI系统研究
  • 批准号:
    04044024
  • 财政年份:
    1992
  • 资助金额:
    $ 3.71万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Ultra-Many-Valued, Highly Parallel Computing System for Biochip Implementation
用于生物芯片实现的超多值、高度并行计算系统
  • 批准号:
    03805033
  • 财政年份:
    1991
  • 资助金额:
    $ 3.71万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

CRCNS: Hierarchical Computations for Vocal Communication.
CRCNS:语音通信的分层计算。
  • 批准号:
    9471964
  • 财政年份:
    2017
  • 资助金额:
    $ 3.71万
  • 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
  • 批准号:
    7293610
  • 财政年份:
    2006
  • 资助金额:
    $ 3.71万
  • 项目类别:
Washington Obstetric-Fetal Pharmacology Research Unit
华盛顿产胎儿药理学研究单位
  • 批准号:
    7695403
  • 财政年份:
    2004
  • 资助金额:
    $ 3.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了