Research on moduli of strongly pseudo-convex CR manifolds embedded in algebraic varieties
嵌入代数簇的强赝凸CR流形模研究
基本信息
- 批准号:09640123
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Strongly pseudo-convex CR manifolds of real dimension greater than or equals to five are realized as boundaries of normal Stein spaces and moreover as real hypersurfaces in algebraic varieties with only normal isolated singularities. Based on this connection between strongly pseudo-convex CR manifolds and normal isolated singularities, in the late '70, M. Kuranishi proposed a problem to approach to moduli of normal isolated singularities by means of CR structures on its boundaries. The main part of this research consists of the final accomplishment of the Kuranishi's problem together with establishment three dimensional geometric ∂ィイD2bィエD2-analysis which is crucial for that accomplishment. And this approach is applied to some typical singularities. The main result obtained in this research is as follows. (1) Let V be an analytic subvariety with dimィイD2CィエD2V≧2 in CィイD1NィエD1 with only singularity at the origin and M = V∩SィイD32n-1(/)εィエD3 where we denote SィイD32n-1(/)εィエD3 a sphere centered at the origin and with a small radius ε. There exists the Kuranishi semi-universal family of stably embeddable deformations of CR structures on M and it is realized as a family of boundaries of the semi-universal family of deformations of the germ ( V, o). (2) Let M be a strongly pseudo-convex boundary of a bounded subdomain of a complex surface and E a holomorphic vector bundle over M. If E is extendable to a holomorphic vector bundle on that bounded domain then the tangential Cauchy Riemann operator ∂ィイD2bィエD2: LィイD12ィエD1(E)→LィイD32(/)(0,1)ィエD3(E) has a closed range. (This analytical result is crucial for the construction of the Kuranishi semi-universal family in (1) in the case of dimィイD2RィエD2 M = 3.)
实维数大于或等于5的强伪凸CR流形被实现为正规Stein空间的边界,并且被实现为只有正规孤立奇点的代数变体中的实超曲面。基于强伪凸CR流形与正规孤立奇点之间的这种联系,70年代末,M. Kuranishi提出了一个利用CR结构在其边界上逼近正规孤立奇点模的问题。本研究的主要部分包括最终完成Kuranishi问题,以及建立三维几何∂D2b d2分析,这对完成该问题至关重要。这种方法应用于一些典型的奇点。本研究的主要结果如下:(1)设V是一个解析子变种,在C γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ。存在着Kuranishi semi-universal家庭稳定的可嵌入CR结构的变形在M和意识到作为一个家庭的界限semi-universal变形的家庭生殖(V, o)。(2)让M是有界的强烈pseudo-convex边界子域的复杂表面和E全纯矢量包/ M .如果E可扩展到全纯矢量束有限域上的切向柯西黎曼运营商∂ィイD2bィエD2:LィイD12ィエD1 (E)→LィイD32(/)(0, 1)ィエD3 (E)有一个封闭的范围内。(这一分析结果对于(1)中在dim φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ M = 3的情况下Kuranishi半泛族的构造是至关重要的。)
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T. Ohmoto: "A remark on the Chern classes of local complete intersections"Proc. Japan Acad.. 73. 93-95 (1997)
T. Ohmoto:“关于局部完全交集的陈省级的评论”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Miyajima: "A note on the Bogomolov-type smoothness on deformations of the regular part of an isolated singularity" Proceedings of the American Mathematical Society. 125・2. 485-492 (1997)
K. Miyajima:“关于孤立奇点的规则部分变形的博戈莫洛夫型平滑性的注释”美国数学会论文集 125・2(1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Yokura: "On Characteristic Classes of Complete Intersections" Contemporary Mathematics Amer.Math.Soc.(印刷中). 21ページ
S.Yokura:“论完全交集的特征类”当代数学 Amer.Math.Soc.(出版中)21 页。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Yokura: "On a Verdier-type Riemann-Roch for Chern-Schwartz-MacPherson class (印刷中)"Topology and Its Applications. 94. 315-327 (1999)
S. Yokura:“关于 Chern-Schwartz-MacPherson 类的 Verdier 型 Riemann-Roch(正在出版)”拓扑及其应用 94. 315-327 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Aikou: "Einstein-Finsler vector bundles"Publ. Math. Debrecen.. 52. 363-384 (1997)
T. Aikou:“Einstein-Finsler 矢量丛”Publ。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIYAJIMA Kimio其他文献
MIYAJIMA Kimio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIYAJIMA Kimio', 18)}}的其他基金
Research on CR-approach to the moduli space of toric singularities
环面奇点模空间的CR方法研究
- 批准号:
23540099 - 财政年份:2011
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the moduli of the geometric structure on a boundary of isolated singularities
孤立奇点边界上几何结构模的研究
- 批准号:
20540087 - 财政年份:2008
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli theory of strongly pseudo-convex CR structure and its application to higher dimensional isolated singularities
强赝凸CR结构的模理论及其在高维孤立奇点中的应用
- 批准号:
17540087 - 财政年份:2005
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the application of the boundary analysis and geometry to the moduli of isolated singularities
边界分析和几何在孤立奇点模中的应用研究
- 批准号:
14540087 - 财政年份:2002
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on moduli of the boundary structure of isolated singularities
孤立奇点边界结构模的研究
- 批准号:
12640080 - 财政年份:2000
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
- 批准号:11271070
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
辛几何中的开“格罗莫夫-威腾”不变量
- 批准号:10901084
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
标准模型精确检验和新物理研究
- 批准号:10747127
- 批准年份:2007
- 资助金额:2.0 万元
- 项目类别:专项基金项目
Deligne-Mumford模空间的拓扑和二维orbifold的弦理论研究
- 批准号:10401026
- 批准年份:2004
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
moduli space of connections and the generalized isomonodromic deformation
连接模空间和广义等单向变形
- 批准号:
19K03422 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
- 批准号:
EP/M017516/2 - 财政年份:2016
- 资助金额:
$ 1.92万 - 项目类别:
Fellowship
Perverse sheaves of categories, and derived symmetries of 3-folds
范畴的反常滑轮和 3 重的派生对称性
- 批准号:
16K17561 - 财政年份:2016
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
- 批准号:
EP/M017516/1 - 财政年份:2015
- 资助金额:
$ 1.92万 - 项目类别:
Fellowship
Geometry of Deformation and Moduli Spaces of Complex Manifolds
复流形的变形几何和模空间
- 批准号:
1510216 - 财政年份:2015
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Moduli theory of strongly pseudo-convex CR structure and its application to higher dimensional isolated singularities
强赝凸CR结构的模理论及其在高维孤立奇点中的应用
- 批准号:
17540087 - 财政年份:2005
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of moduli of indecomposable modules and degeneration of modules
不可分解模的模和模的退化研究
- 批准号:
15340010 - 财政年份:2003
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on the application of the boundary analysis and geometry to the moduli of isolated singularities
边界分析和几何在孤立奇点模中的应用研究
- 批准号:
14540087 - 财政年份:2002
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: Versal Deformations, Deformation Quantization, Moduli Spaces and Graph Complexes
RUI:Versal 变形、变形量化、模空间和图复合体
- 批准号:
0200669 - 财政年份:2002
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Development of the multi-anvil deformation apparatus and rheology of the upper mantle
上地幔多砧变形装置和流变学的发展
- 批准号:
13554013 - 财政年份:2001
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




