非線形楕円型方程式とその周辺に関する研究

非线性椭圆方程及其周边研究

基本信息

  • 批准号:
    08640241
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 无数据
  • 项目状态:
    已结题

项目摘要

計画調書の研究目的にかかげた目標に関連した主たる成果は以下の通りである。1.非線形項が境界で特異性を有する半線形楕円型方程式 -Δu(χ)=Κ(χ)u^β(χ)/(1-|χ|)^α χ∈B={χ∈R^N;|χ|<1}に対して、変分的手法により以下の結果を得た。(1)β+1【greater than or equ非自明古典解(C^2(B)∩C^1(B^^-)に属する解)は存在しない。(2)0<α<min(β+1,(β+1)/2+1),α<2^*=(N+1)(N-2) ならば、非自明古典解が存在する。(3)0<β【less than or equal】1,β+1【less than or equal】α<(β+1)/2+1 ならば、Holder連続な非自明解が一意的に存在する。これらの成果は、従来の結果を大幅に改良したもので、その全貌がほぼ解明されたと言える。しかしながら、1<β,(β+1)/2+1【less than or equal】α<β+1 の場合の2.非有界領域における弱解に対するPohozaev型の不等式が、星状領域の外部領域及び柱状領域に対して確立され、準線形楕円型方程式の弱解の非存在に応用された。この結果、解の存在・非存在に関して、星状領域の内部と外部との双対性が明らかにされ、この分野における重要な知見が得られた。3.Pohzaev型の(不)等式に依らない、正値解の非存在の為の新たな手法の端緒が開かれた。これは、領域は平行移動不変性と正値解の一意性の議論を組み合わせた議論によるもので、正値解の一意性がよく調べられている、固有値問題、sub-linear(sub-principal)caseに対して有力な道具を提供するものである。この手法のより一般的な場合への拡張が期待される。その他、これに関連する周辺の成果も多数得られている。
The purpose of the study is to achieve the following results: 1. Non-linear term, boundary, specificity, semi-linear equation-Δu(χ)= K (χ)u^β(χ)/(1-|χ|)^α χ∈B={χ∈R^N;| χ| <1} The following results were obtained by means of different methods. (1)β+1 greater than or equ Non-self-evident classical solution (C^2(B)$> C^1(B^-) belongs to solution) does not exist (2)0<α<min(β+1,(β+1)/2+1),α<2^*=(N+1)(N-2) (3)0<β [less than or equal] 1,β+1 less than or equal] α<(β+1)/2+1, Holder The results of this study were greatly improved, and the overall picture was clarified. 2. Pohozaev type inequalities for weak solutions in non-bounded domains, outer domains in star domains and cylindrical domains are established, and weak solutions for quasi-linear equations are used for nonexistence. The result, the existence of the solution, the non-existence of the solution, the internal and external aspects of the stellar domain, the duality of the solution, the separation of the solution, the important knowledge, the knowledge, the knowledge. 3. Pohzaev type and (not) equation depend on the existence of a positive value solution and a non-existence of a new method. This is the case with the problem of inherent value, sub-linear(sub-principal)case, and powerful item. This technique is generally used in situations where the user is looking forward to it. Most of the results obtained from the study were related to other factors.

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kenji NISHIHARA: "Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping" J.Differential Equations. (to appear).
Kenji NISHIHARA:“带阻尼的双曲守恒定律系统解的非线性扩散波的收敛率”J.Differential Equations。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazunaga TANAKA: "Periodic solutions of first order singular Hamiltonian systems" Nonlinear Analysis T.M.A.26. 691-706 (1996)
Kazunaga TANAKA:“一阶奇异哈密顿系统的周期解”非线性分析 T.M.A.26。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

大谷 光春其他文献

High frequency solutions for singularly perturbed 1D semilinear problems
奇扰动一维半线性问题的高频解
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大谷 光春;原田 潤一;K. Tanaka;K. Tanaka;K. Kurata;Y. Yamada;Y. Yamada;K. Tanaka;K. Tanaka;K. Kurata;Y. Yamada;Y. Yamada;K.Tanaka;K.Kurata;Y.Yamada;K. Tanaka
  • 通讯作者:
    K. Tanaka
Transition layers and spikes for a class of bistable re action-diffusion equations
一类双稳态反应扩散方程的过渡层和尖峰
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大谷 光春;原田 潤一;K. Tanaka;K. Tanaka;K. Kurata;Y. Yamada;Y. Yamada;K. Tanaka;K. Tanaka;K. Kurata;Y. Yamada;Y. Yamada;K.Tanaka;K.Kurata;Y.Yamada;K. Tanaka;K. Tanaka;M. Otani;K. Tanaka;M. Otani;K. Tanaka;K. Tanaka;K. Kurata;K. Kurata;Y. Yamada
  • 通讯作者:
    Y. Yamada
Positive solutions of nonlinear scalar field equations
非线性标量场方程的正解
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大谷 光春;原田 潤一;K. Tanaka
  • 通讯作者:
    K. Tanaka
Sign-changing multi-bump solutions for NLS with steep potential wells
具有陡峭势井的 NLS 符号改变多凸点解决方案
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大谷 光春;原田 潤一;K. Tanaka;K. Tanaka;K. Kurata;Y. Yamada;Y. Yamada;K. Tanaka;K. Tanaka;K. Kurata;Y. Yamada;Y. Yamada;K.Tanaka;K.Kurata;Y.Yamada;K. Tanaka;K. Tanaka;M. Otani;K. Tanaka;M. Otani;K. Tanaka
  • 通讯作者:
    K. Tanaka
Patterns of stationary solutions for a certain reaction-diffusion model in disrupted environmen
破坏环境中特定反应扩散模型的平稳解模式
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大谷 光春;原田 潤一;K. Tanaka;K. Tanaka;K. Kurata;Y. Yamada;Y. Yamada;K. Tanaka;K. Tanaka;K. Kurata;Y. Yamada;Y. Yamada;K.Tanaka;K.Kurata;Y.Yamada;K. Tanaka;K. Tanaka;M. Otani;K. Tanaka;M. Otani;K. Tanaka;K. Tanaka;K. Kurata;K. Kurata;Y. Yamada;K. Tanaka;K. Tanaka;K. Kurata;K. Kurata
  • 通讯作者:
    K. Kurata

大谷 光春的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('大谷 光春', 18)}}的其他基金

放物型方程式論の肥沃化と深化:革新的研究分野の開拓
丰富和深化抛物方程理论:开拓创新研究领域
  • 批准号:
    23K03172
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
放物型方程式論の深化と放物型性の起源の探索
深化抛物方程理论,寻找抛物性起源
  • 批准号:
    18K03382
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形放物型方程式のアトラクターの研究
非线性抛物方程吸引子的研究
  • 批准号:
    18654031
  • 财政年份:
    2006
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
劣微分作用素に対する非単調摂動理論とその物質科学への応用
次微分算子的非单调摄动理论及其在材料科学中的应用
  • 批准号:
    04F04050
  • 财政年份:
    2004
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
対称臨界性原理とその非線形偏微分方程式への応用
对称临界原理及其在非线性偏微分方程中的应用
  • 批准号:
    15654024
  • 财政年份:
    2003
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
非線形偏微分方程式系の総合的研究
非线性偏微分方程系统综合研究
  • 批准号:
    06640277
  • 财政年份:
    1994
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非線形偏微分方程式の概周期解の研究
非线性偏微分方程近似周期解的研究
  • 批准号:
    60740099
  • 财政年份:
    1985
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非線型固有値問題の研究
非线性特征值问题研究
  • 批准号:
    X00095----464054
  • 财政年份:
    1979
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (D)

相似海外基金

特異性や制約条件を持つ非線形楕円型方程式の解構造の研究
具有奇点和约束的非线性椭圆方程的解结构研究
  • 批准号:
    24K06802
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
楕円型方程式の精密解析と定性理論の新展開
椭圆方程的精确分析与定性理论的新进展
  • 批准号:
    24K00530
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
非有界領域における半線形楕円型方程式の可解性問題
无界域半线性椭圆方程的可解性问题
  • 批准号:
    23KJ0645
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形楕円型方程式に対する変分解析の新展開
非线性椭圆方程变分分析的新进展
  • 批准号:
    23K03178
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形楕円型方程式の解の符号と変分的エネルギーの解析
非线性椭圆方程解的符号和变分能量分析
  • 批准号:
    23K03170
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非局所非線形楕円型方程式に対する特異摂動解析
非局部非线性椭圆方程的奇异摄动分析
  • 批准号:
    22K03380
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
楕円型方程式の初期値問題を例とした逆問題の数値的手法の見直し
以椭圆方程初值问题为例回顾反问题的数值方法
  • 批准号:
    22K18674
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
臨界型非線形楕円型方程式における解の集中現象の研究-余質量を伴う集中-
临界非线性椭圆方程解的集中现象研究 - 附加质量集中 -
  • 批准号:
    21K13813
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
非線形楕円型方程式の固有値問題と逆問題の精密解析
非线性椭圆方程特征值问题和反问题的精确分析
  • 批准号:
    21K03310
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
半線形楕円型方程式の定性解析-安定性が導く新潮流-
半线性椭圆方程的定性分析-稳定性引领的新趋势-
  • 批准号:
    20J01191
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了