国際共同研究「超弦理論と量子コホモロジー」を組織する為の企画調査
组织国际联合研究“弦理论与量子上同调”的规划调查
基本信息
- 批准号:10894003
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
本企画調査の目的は「弦理論」と深く関わりある幾何学、特にシンプレクテック幾何学および代数幾何学等の諸分野において弦理論の新しい進展を取り入れながら21世紀の空間概念の創造の為の数学的基礎付けの為の研究を立ち上げる準備をする事であった。特に、深谷・小野のグロモフ・ウイッテン不変量および量子コホモロジー環のシンプレクテック幾何学的基礎付け、齋藤・細野・前野らのミラー対称性の研究や代数多様体の量子コホモロジーの具体的決定、上野・清水の共形場理論とヴイラソロ代数およびリーマン面のモジュライの幾何等の研究を踏まえて、国内外の研究者を巻き込んだ研究体制の構築の方法を調査研究した。この観点から平成11年度に京都大学数理解析研究所において「弦理論に関わる幾何学」という国際共同研究プロジェクトの採用が決定し、本企画調査の研究分担者が中心となり組織していく事が決定しており、その具体的企画調査を行なった。主な具体的企画調査については次の通り。1.細野が1998年7月26日から2週間、Canada,Kingstonに滞在し齋藤とクイーンズ大学の由井典子教授にその時点までの企画についてレビューを受け同時に国際的共同研究の可能性について情報収集および調査をした。2.1998年11月兵庫県城崎代数学シンポジュムにおいては、深谷および細野が研究発表を行なうとともに,数研プロジェクトの計画について議論した。3.1999年1月北海道大学にて、数研プロジェクトの企画会議および最新の研究情勢の報告会をおこなう。4.これ以外にも、齋藤、清水、細野、深谷、小野は不定期に企画会議および情報交換を行なった。この企画調査の結果として、数理研プロジェクトにおいて2件の国際研究集会および、3件の短期共同研究(ワークショップ)の企画が決定し現在その準備を行なっている。
The purpose of this project is to learn more about how to learn how to learn, how to learn how to learn, how to learn how to learn algebra, and so on. The purpose of this project is to introduce the concept of space in the 21st century into the basic theory of mathematics, which is the basis for the study of mathematics. In particular, in the valley, Ono, in the middle of the day, there is a great deal of information about the nature of the study of the environment, the environment and the environment. Ueno Shimizu conformal theory, algebra theory, algebra theory, research, research and development. In November, the Institute of Mathematical Analysis of Kyoto University asked the Institute of Mathematical Analysis of Kyoto University to discuss how to learn in terms of string theory and theory. The international and international joint research organization will make decisions on the basis of the decision made by the research contributor center, and the organization will make decisions on specific projects. The main purpose of this paper is to discuss the details of the project. 1. On July 26th, 1998, Canada,Kingston was stranded at Yoshinomiyuki University in Fukuto. Professor Jing Dianzi planned to accept the possibility of receiving the joint study of the international community at the same time. 2. In November 1998, the arsenal, Ishizaki Algebra, Mizaki Algebra, and Deep Valley Algebra, the research table, the database, the field, the field. 3. In January 1999, Hokkaido University held a meeting on the latest research information and reports. 4. There will be occasional planning meetings in the fields of Yoshimi, Shimizu, Shimizu, Yoshino, Deep Valley and Ono. According to the results of the project, two international research conferences and three short-term joint research projects have decided that they are now ready to do business.
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Fukaya: "Morse homotopy and its quantization" AMS/IP Studies in Advanced Mathematics. 2. 409-440 (1997)
K.Fukaya:高等数学中的“莫尔斯同伦及其量子化”AMS/IP 研究。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Noumi: "Affine Weyl groups,discrete dynamical systems and Painleve equations" Comm.Math.Phys.199. 281-295 (1998)
M.Noumi:“仿射外尔群、离散动力系统和 Painleve 方程”Comm.Math.Phys.199。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Hosono: "On the Mirror Symmetry Conjecture for Schoen's Calabi-Yan 3-folds" “Integrable Systems and Algebraic Geometry",World Scientific,eds.by M.-H.Saito,Y.Shimizu,K.Ueno. 194-235 (1998)
S.Hosono:“关于 Schoen 的 Calabi-Yan 3 倍的镜像对称猜想”,“可积系统和代数几何”,世界科学,M.-H.Saito、Y.Shimizu、K.Ueno 编辑,194- 235 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Fukaya: "Floer homology of Lagrangian Foliation and Non Commutative Mirror Symmetry,I" Kyoto-Math.98-8. 1-54 (1998)
K.Fukaya:“拉格朗日叶状结构和非交换镜像对称的Floer同源性,I”Kyoto-Math.98-8。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Shimizu: "Knizhnik-Zamolodchikov-Bernard Equation of Higher Genera" “Integrable Systems and Algebraic Geometry",World Scientific,eds.by M.-H.Saito,Y.Shimizu,K.Ueno. 384-411 (1998)
Y.Shimizu:“高等属的 Knizhnik-Zamolodchikov-Bernard 方程”“可积系统和代数几何”,世界科学,M.-H.Saito、Y.Shimizu、K.Ueno 编辑,384-411 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
齋藤 政彦其他文献
Proceedings of the workshop "Algebraic geometry and integrable systems related to string theory"
“与弦理论相关的代数几何和可积系统”研讨会论文集
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
京都大学数理解析研究所;齋藤 政彦 - 通讯作者:
齋藤 政彦
Application of quiver varieties to the control theory
箭袋品种在控制理论中的应用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Komyo;M.-H. Saiito;M.-H. Saito;M.-H. Saito;齋藤 政彦;M.-H. SAITO;M.-H. Saito;M.-H. Saito;M.-H. Saito;M.-H. Saito;M.-H. Saito;M.-H. Saito;M.-H. Saito;齋藤政彦;M.-H. Saito;M.-H. Saito - 通讯作者:
M.-H. Saito
Moduli spaces of connections and Higgs bundles and geometry of spectral curves (I)
连接模空间和希格斯丛以及光谱曲线的几何(I)
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Komyo;M.-H. Saiito;M.-H. Saito;M.-H. Saito;齋藤 政彦;M.-H. SAITO;M.-H. Saito;M.-H. Saito;M.-H. Saito;M.-H. Saito;M.-H. Saito;M.-H. Saito;M.-H. Saito;齋藤政彦;M.-H. Saito;M.-H. Saito;M.-H. Saito;M.-H. Saito - 通讯作者:
M.-H. Saito
数学の楽しみと広がり~代数幾何学とパンルヴェ型方程式、そして数理・データサイエンスセンター
数学的乐趣和扩展 - 代数几何、Painlevé 方程以及数学和数据科学中心
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
齋藤 政彦 - 通讯作者:
齋藤 政彦
「リーマン・ヒルベルト対応の幾何学とパンルヴェ型微分方程式」
《黎曼-希尔伯特对应几何与Painlevé型微分方程》
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Komyo;M.-H. Saiito;M.-H. Saito;M.-H. Saito;齋藤 政彦 - 通讯作者:
齋藤 政彦
齋藤 政彦的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('齋藤 政彦', 18)}}的其他基金
Algebraic Geometry and Integrable Systems -- Moduli theory and Equations of Painleve type
代数几何与可积系统——模理论与Painleve型方程
- 批准号:
22H00094 - 财政年份:2022
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Geometry of Moduli spaces of Connections and Higgs fields and their Applications
联结模空间和希格斯场的几何及其应用
- 批准号:
22K18669 - 财政年份:2022
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
代数幾何と可積分系の融合 - 種々のモジュライ空間と数学・数理物理学の新展開 -
代数几何与可积系统的融合 - 各种模空间以及数学和数学物理的新发展 -
- 批准号:
17H01087 - 财政年份:2017
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
モジュライ理論による代数幾何と可積分系の新たな展開
使用模理论的代数几何和可积系统的新进展
- 批准号:
24244003 - 财政年份:2012
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
ガウス・マニン系の無限遠における漸近展開と数論的カラビ・ヤウ多様体
高斯-马宁系统的无穷远渐近展开与算术卡拉比-丘流形
- 批准号:
16654004 - 财政年份:2004
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Exploratory Research
高次元対数的シンプレテック多様体とパンルベ方程式の高次元化
高维对数辛流形和 Painlevé 方程的高维化
- 批准号:
13874003 - 财政年份:2001
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Exploratory Research
パンルベ方程式と有理代数多様体のシンプレクテック変形
Painlevé 方程和有理代数簇的辛变形
- 批准号:
11874008 - 财政年份:1999
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Exploratory Research
加齢及び虚血に伴う下部尿路機能の変化
与衰老和缺血相关的下尿路功能变化
- 批准号:
09671622 - 财政年份:1997
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
モ-デル=ベイユ格子とカラビ=ヤウ多様体のミラー対称性予想
模型-Weil 格子和 Calabi-Yau 流形的镜像对称猜想
- 批准号:
08211232 - 财政年份:1996
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
相似海外基金
ミラー対称性とグロモフ-ウイッテン不変量の導来圏の幾何学による研究
镜像对称和 Gromov-Witten 不变量的派生范畴的几何研究
- 批准号:
14740042 - 财政年份:2002
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




