逆問題の解の再構成手法の確立
逆问题解重构方法的建立
基本信息
- 批准号:13894002
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
物理・工学・医学などの応用分野においてはCT(断層撮影法)など種々の逆問題が技術として利用されており、その成果は我々の生活を支えている。しかしこれらの逆問題は数学的にはHadamardの意味で非適切であり、通常の単純離散化による手法での解の再構成、特に数値的再構成は殆んど不可能である。このため、Tikhonov正則化法を始めとする幾つかの正則化法(緩和的手法)や、問題固有の情報(先見情報)を援用した解析手法が提案されている。しかしこれらの先見情報の利用は問題個別の議論が殆んどであり、その正当性などの数学解析は殆んどの場合は未だ示されていない。また同種の手法を分野固有の述語による記述をするため、分野を越えての共通理解が滞り、此れが研究推進を阻害している場合も見受けられる。この様な状況を鑑み、分野横断的な逆問題解析の研究を我が国において行う可能性を調査することが本研究の目的である。今回の調査研究では、逆問題の分野で医学・工学・物理・数学において我が国をリードする研究者を分担者として組織して調査を行い、主として分担者による個別調査によるかたちで調査を行い、メールを通しての相互意見交換によって今後の研究の進め方を議論した。この結果、現在は複数の分野にわかれて独立して研究している研究者が「逆問題」「非適切問題」をキーワードに研究交流・共同研究を行うことが重要であるという共通認識が持たれ、さらには京都大学を中心に現在進行している多倍長数値計算環境の援用を医学・工学の応用逆問題の解の再構成に適用することの意義が指摘された。また分担者の何人かがロシア・香港での逆問題・非適切問題の国際研究集会に参加し、海外での応用逆問題の研究動向を調査し、海外においても応用逆問題の解の再構成-特に数値解析に対する関心が高いことを実感した。この調査研究の結果をふまえ、平成14年度には特定領域の新設に向けての申請準備を行うことが妥当であるという結論に達し、平成13年度末には既に準備を開始している。
Physics, engineering, medicine な ど の 応 use eset に お い て は CT (fault pinch of shadow method) な ど kind 々 の inverse problem が technology と し て using さ れ て お り, そ の results は I 々 の life with を え て い る. し か し こ れ ら の inverse problem は mathematical に は Hadamard の mean で not appropriate で あ り, usually の 単 pure discretization に よ る gimmick で の の solution to form again, special に several numerical forming は perilous ん ど impossible で あ る. こ の た め beginning, Tikhonov regularization method を め と す る several つ か の regularization method (moderate technique) や, problems inherent の intelligence (intelligence) seer を invoking し た parsing technique proposed が さ れ て い る. し か し こ れ ら の seer intelligence problems on の は individual talk の が perilous ん ど で あ り, そ の legitimacy な ど の は mathematic analysis almost ん ど の occasions は だ not shown さ れ て い な い. ま た same の gimmick を eset inherent の adnex に よ る account を す る た め, eset を more え て の common understanding hysteresis り が this れ が research advance を resistance against し て い る occasions も see by け ら れ る. こ の others な を jian み, eset transection な inverse problem resolution の research を I が countries に お い て を survey line う possibility す る こ と が の purpose this study で あ る. Today back の investigation で は, inverse problem の eset で medicine, engineering, physics, mathematics に お い て I が countries を リ ー ド す る researchers を sharers と し て organization し て survey line を い, main と し て sharers に よ る individual survey に よ る か た ち で survey line を い, メ ー ル を tong し て の mutual exchange に よ っ て の の research into future め party talk を し た . こ の result, now は plural の eset に わ か れ て independent し て research し て い る researchers が "inverse problem" "not appropriate" を キ ー ワ ー ド に study exchanges, common line を う こ と が important で あ る と い う common experience が hold た れ, さ ら に は Kyoto university を center に now し て い る more times as long as the numerical computing environment の invoking を medical workers Learn 応 to solve the inverse problem <e:1> and then form に. Applicable to する と と. Meaning が. Criticize された. ま た sharers who の か が ロ シ ア, Hong Kong で の inverse problem, the appropriate problem の international research rally に し and overseas で の 応 with inverse problem の し research trends を investigation, overseas に お い て も 応 with inverse problem の の formation - again に the numerical analytical に す seaborne る masato high heart が い こ と を be feeling し た. こ の investigation results の を ふ ま え, pp.47-53 14 year に は の に newly specific areas to け て の preparation for line を う こ と が appropriate で あ る と い う conclusion に し, pp.47-53 13 at the end of the year に は having begun に prepare を し て い る.
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
西村 直志: "多重極積分方程式法を用いたクラックによる3次元散乱問題の解析"機械学会論文集. A-67. 16-22 (2001)
Naoshi Nishimura:“使用多极积分方程法分析裂纹引起的三维散射问题”日本机械工程师学会会刊 A-67(2001 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Iso: "Numerical computations for ill-conditioned problems by multiple precision system"Theoretical and Applied Mechanics. 50. 419-424 (2001)
Y.Iso:“多精度系统病态问题的数值计算”理论与应用力学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Iso: "Numerical computations for ill-conditioned problems by multiple precision system"Proceedings of MSCOM2000. 185-194 (2001)
Y.Iso:“多精度系统病态问题的数值计算”MSCOM2000 论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Kigami: "Self-similarity of volume measurcs for Laplacians on p.c.f.self-similar"Communications on Math.Physics. 217. 165-180 (2001)
J.Kigami:“p.c.f.自相似拉普拉斯体积测量的自相似性”数学物理通讯。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Nishimura: "Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D"J.Num.Math.Eng.. 50. 525-547 (2001)
N.Nishimura:“快速多极伽辽金边界积分方程方法在 3D 弹性静力裂纹问题中的应用”J.Num.Math.Eng.. 50. 525-547 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
磯 祐介其他文献
64bit計算環境に適した多倍長計算環境の構築と非適切問題の数値計算
适合64位计算环境的多精度计算环境的构建以及不适当问题的数值计算
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
藤原 宏志;磯 祐介 - 通讯作者:
磯 祐介
Colored quadrangulation with Steiner points
带斯坦纳点的彩色四边形
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Kobayashi;A. Nakamoto and T. Yamaguchi;Shinji Adachi and Tatsuya Watanabe;磯 祐介;V. Alvarez and A. Nakamoto - 通讯作者:
V. Alvarez and A. Nakamoto
Faithful embeddings of graphs on closed surfaces
图在闭合曲面上的忠实嵌入
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Norihisa Ikoma; Hitoshi Ishii;磯 祐介;Seiya Negami - 通讯作者:
Seiya Negami
多倍長計算環境の64ビットPCでの実現と高精度数値積分公式への適用
64位PC上多精度计算环境的实现及高精度数值积分公式的应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
藤原 宏志;磯 祐介 - 通讯作者:
磯 祐介
磯 祐介的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('磯 祐介', 18)}}的其他基金
特異性・非適切性が本質的な微分方程式の数値計算における多倍長数値計算環境の活用
多精度数值计算环境在奇异性和不适当性至关重要的微分方程数值计算中的利用
- 批准号:
23K20811 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effective use of multi-precision arithmetic on floating number system of digital computers aiming at numerical computations of differential equations with singulari or ill-posedness
针对奇异或不适定微分方程的数值计算,有效利用数字计算机浮点数系统的多精度运算
- 批准号:
21H00999 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of Mathematical Modeling and Analysis for Antidune in Rivers
河流反沙丘数学建模与分析研究
- 批准号:
21K18586 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
高解像光トモグラフィの実現に向けての数学的基礎研究
实现高分辨率光学层析成像的基础数学研究
- 批准号:
21654016 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
蛍光CTの基礎となる輸送方程式の逆問題の解の数値的再構成
荧光 CT 输运方程反问题解的数值重构
- 批准号:
17654023 - 财政年份:2005
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Exploratory Research
特定領域「応用逆問題解析」の申請へ向けての調査と国内調整
特定领域“应用反问题分析”应用的调查和国内协调
- 批准号:
15634005 - 财政年份:2003
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
多倍長数値計算環境下での逆問題・非適切問題の数値解析手法の確立
多精度数值计算环境下反问题和不适合问题数值分析方法的建立
- 批准号:
15654017 - 财政年份:2003
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Exploratory Research
楕円型境界値問題の高精度解法としての境界要素法
边界元法作为椭圆边值问题的高精度解
- 批准号:
11874019 - 财政年份:1999
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Exploratory Research
「非適切問題における適切クラスの決定と積分方程式を利用した非適切問題の数値解析」
“确定不适当问题的适当类别以及使用积分方程对不适当问题进行数值分析”
- 批准号:
08874009 - 财政年份:1996
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Exploratory Research
非適切問題における適切クラスの決定と適切クラスを利用する非適切問題の数値解析
确定不适当问题的适当类别,并使用适当的类别对不适当问题进行数值分析
- 批准号:
07854008 - 财政年份:1995
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
多倍長数値計算環境下での逆問題・非適切問題の数値解析手法の確立
多精度数值计算环境下反问题和不适合问题数值分析方法的建立
- 批准号:
15654017 - 财政年份:2003
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Exploratory Research
「非適切問題における適切クラスの決定と積分方程式を利用した非適切問題の数値解析」
“确定不适当问题的适当类别以及使用积分方程对不适当问题进行数值分析”
- 批准号:
08874009 - 财政年份:1996
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Exploratory Research
非適切問題における適切クラスの決定と適切クラスを利用する非適切問題の数値解析
确定不适当问题的适当类别,并使用适当的类别对不适当问题进行数值分析
- 批准号:
07854008 - 财政年份:1995
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)