非線形可積分系によるアルゴリズムの開発と情報幾何
使用非线性可积系统开发算法和信息几何
基本信息
- 批准号:08874013
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Exploratory Research
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1997
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
平成9年度は本科研費の援助のもとで4件の研究打ち合わせ国内出張,3件の研究発表国内出張を行った.また,新設のため計算機設備の乏しい自らの講座に数値シミュレーション用計算機1台を購入しアルゴリズムの数値実験を行った.以上の研究活動へのサポートを感謝する.この研究課題に関連して平成9年度には次の進展があった。代表者による可積分系と線形計画法との関わりに関する一連の研究の延長上として,線形計画法における標準問題をRayleigh商の最小化問題ととらえ,可積分な勾配系の可積分差分による新しい内点法アルゴリズムの定式化を行った.拘束条件のない場合にはKarmarkar法より少ない計算量で最適解に収束することが確認された.この力学系はエントロピーをポテンシャルとするη測地線の方程式でもあり,内点法,可積分系,情報幾何の新しい接点を与えている.さらに,内点法の超離散極限,および関連する離散最適化問題を明かにした.以上の研究成果は,平成9年7月23日理化学研究所で開催された「情報幾何ワークショップ」において「内点法・可積分差分・情報幾何」と題する講演,平成9年11月26日九州大学応用力学研究所で開催された「ソリトン理論の新展開研究集会」において「勾配系の可積分差分と線形計画法」と題する招待講演などとして公開された.九州大学応用力学研究所における講演記録は同研究所講究録に6ページのレポートとして収められる予定である.
In 2009, 4 research projects and 3 research projects were launched in China. In addition, the newly installed computer equipment has been upgraded from the lecture to the lecture. One computer has been purchased and the number of lectures has been upgraded. Thank you for the above research activities. This research topic is related to the progress of Heisei 9. The linear programming method is used to solve the standard problem of minimizing Rayleigh quotient. In the case of constraint conditions, Karmarkar method is used to calculate the optimal solution. The equation of geodesic line is the integral system, the new contact point of information geometry. In this paper, the hyperdiscrete limit of interior point method and the discrete optimization problem of correlation are discussed. The above research results were presented at the Institute of Physical Chemistry on July 23, 2009, on the topic of "Information Geometry,""Interior Point Method, Integral Difference, Information Geometry." On November 26, 2009, the Institute of Applied Mechanics, Kyushu University held a seminar on "New Development of Solution Theory" and a lecture on "Integral Difference and Linear Planning Method for Matching Systems." The Institute of Applied Mechanics, Kyushu University
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Nakamura: "Jacobi algorithm for symmetric eigenvalue problem and integrable gradient system of Lax form" Japan Journal of Industrial and Appleid mathematics. 14巻・2号. (1997)
Y. Nakamura:“对称特征值问题和 Lax 形式的可积梯度系统的雅可比算法”,日本工业和 Appleid 数学杂志,第 14 卷,第 2 期。(1997 年)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
中村佳正: "ソリトン理論と数値計算法" 電子情報通信学会誌. 80巻11号. 1143-1146 (1997)
中村义正:“孤子理论和数值计算方法”,电子信息通信工程师学会学报,第 80 卷,第 1143-1146 期(1997 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Nakamura: "Calculating Laplace transforms in terms of the Toda molecule" SIAM Journal on Scientific Computing. (発表予定).
Y. Nakamura:“根据户田分子计算拉普拉斯变换”SIAM 科学计算杂志(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Nakamura,L.Faybusovich: "On explicitly solvable gradient systems of Moser-Karmarkar type" Journal of Mathematical Analysis and Applications. 205巻・1号. 88-106 (1997)
Y. Nakamura、L. Faybusovich:“关于 Moser-Karmarkar 型的显式可解梯度系统”,《数学分析与应用杂志》,第 205 卷,第 1. 88-106 期(1997 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Nakamura: "Jacobi algorithm for symmetric eigenvalue problem and integrable gradient system of Lax form" Japan Journal of Industrial and Applied Mathematics. vol.14. 159-168 (1997)
Y.Nakamura:“对称特征值问题的雅可比算法和Lax形式的可积梯度系统”日本工业与应用数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
中村 佳正其他文献
複素非対称行列向け固有値解法のCSX600による高速化
使用CSX600加速复杂非对称矩阵特征值求解方法
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
宮田 考史;山本 有作;中村 佳正 - 通讯作者:
中村 佳正
TN行列の逆固有値問題の離散ハングリー戸田方程式による有限ステップ解法について
基于离散Hungry Toda方程的TN矩阵反特征值问题的有限步求解
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
赤岩 香苗;中村 佳正;岩崎 雅史;堤 久宜;近藤 弘一 - 通讯作者:
近藤 弘一
離散ハングリー戸田方程式に関連づくTotally Nonnegative行列の逆固有値問題について
关于离散Hungry Toda方程的全非负矩阵的反特征值问题
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
赤岩 香苗;中村 佳正;岩崎 雅史;近藤 弘一;佐々木恭志郎;赤岩 香苗 - 通讯作者:
赤岩 香苗
中村 佳正的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('中村 佳正', 18)}}的其他基金
新しい特異値分解法に基づく連立一次方程式のクリロフ部分空間法の開発
基于新的奇异值分解方法开发联立线性方程的 Krylov 子空间方法
- 批准号:
19656025 - 财政年份:2007
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
可積分系理論に基づく組合せ論研究の創始
基于可积系统理论的组合学研究的起源
- 批准号:
16654020 - 财政年份:2004
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Exploratory Research
離散時間ロトカ・ボルテラ系による特異値計算アルゴリズムの開発
使用离散时间Lotka-Volterra系统的奇异值计算算法的开发
- 批准号:
13874019 - 财政年份:2001
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Exploratory Research
可積分な勾配系の差分化による新しい内点アルゴリズムの開発と情報幾何
基于可积梯度系统微分的新型内点算法和信息几何的发展
- 批准号:
10874019 - 财政年份:1998
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Exploratory Research
無限可積分系のタウ関数によるBCH-Goppa符号の復号化アルゴリズムの開発
使用无限可积系统的 tau 函数开发 BCH-Goppa 码的解码算法
- 批准号:
08211106 - 财政年份:1996
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
離散可積分系とその差分法とアルゴリズムへの応用
离散可积系统及其在有限差分方法和算法中的应用
- 批准号:
07210105 - 财政年份:1995
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
非線形可積分系による応用解析
使用非线性可积系统的应用分析
- 批准号:
06221111 - 财政年份:1994
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
非線形可積分系の数理
非线性可积系统数学
- 批准号:
05229003 - 财政年份:1993
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
非線形力学系による線形計画問題の内点アルゴリズムの開発と情報幾何学
使用非线性动力系统和信息几何开发线性规划问题的内点算法
- 批准号:
04804005 - 财政年份:1992
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
非線形可積分系の応用解析特に線形計画問題の内点アルゴリズムの開発
非线性可积系统的应用分析,特别是线性规划问题的内点算法的开发
- 批准号:
03804005 - 财政年份:1991
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
機械学習アルゴリズムを用いた敗血症性凝固線溶障害の早期予測モデルの開発
使用机器学习算法开发脓毒性凝血和纤溶性疾病的早期预测模型
- 批准号:
24K12133 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
アルゴリズムとアーキテクチャの協調によるベイジアンネットワークの学習推論基盤
基于算法与架构协同的贝叶斯网络学习与推理平台
- 批准号:
24KJ0578 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
電子状態計算のための精度保証付き量子アルゴリズムの開拓
开发一种保证精确度的量子算法来计算电子态
- 批准号:
24K08334 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
時間依存する非平衡系の最適な量子アルゴリズムの構築
瞬态非平衡系统最优量子算法的构建
- 批准号:
24K16974 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ロボットの優しい動作の為の汎用性の高い駆動・電気系非線形性補償アルゴリズムの開発
开发用于温和机器人运动的高度通用的驱动/电气系统非线性补偿算法
- 批准号:
24K17258 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
高齢フレイルがん患者における身体機能評価アルゴリズムの開発
老年衰弱癌症患者身体机能评估算法的开发
- 批准号:
24K20552 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
因果推論手法を用いた細胞療法の最適化アルゴリズムの開発
使用因果推理方法开发细胞治疗的优化算法
- 批准号:
24K19198 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
終末期患者のQOL向上を目指した呼吸困難治療アルゴリズム作成に関する研究
创建旨在改善绝症患者生活质量的呼吸困难治疗算法的研究
- 批准号:
23K21406 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
有用物質を効率的に生産する代謝ネットワークの設計アルゴリズム
设计有效产生有用物质的代谢网络的算法
- 批准号:
23K20386 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CT画像から解析したX線の入射方向情報を援用した患者表面線量分布の決定アルゴリズム
使用从 CT 图像分析的 X 射线入射方向信息确定患者表面剂量分布的算法
- 批准号:
24K21135 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




