Assessment of Corneal Fibroblast Biomechanical Behavior
角膜成纤维细胞生物力学行为的评估
基本信息
- 批准号:10217723
- 负责人:
- 金额:$ 8.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-02-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional4D ImagingArchitectureBehaviorBiochemicalBiomechanicsBiophysicsCell Differentiation processCellsClinicalCollagenCorneaCustomDataDepositionDevelopmentDiseaseEnvironmentExperimental ModelsExtracellular MatrixFibrinFibroblastsFibronectinsFluorescenceFreezingGenerationsGrantGrowth FactorHistone DeacetylaseHistone Deacetylase InhibitorIn SituIn VitroIndividualInjuryLeadMechanicsMicroscopeModelingMorphogenesisMorphologyMyofibroblastOperative Surgical ProceduresOryctolagus cuniculusPatternPhenotypePhotorefractive KeratectomyPlatelet-Derived Growth FactorProceduresProcessPublishingResearchRunningSignal PathwaySignal TransductionStreamStress FibersStromal CellsStructureTestingTimeTissue EngineeringTissuesTransforming Growth Factor betabasecell behaviorcell growthcell motilitycell typecorneal scarcrosslinkcytokineex vivo imagingimaging approachimaging capabilitiesin vitro Modelin vivoinsightmechanical behaviormechanical propertiesmigrationnovelreflectance confocal microscopyresponserhosecond harmonic generation imagingwound healing
项目摘要
PROJECT SUMMARY
Mechanical interactions between cells and extracellular matrix (ECM) drive fundamental processes such as
morphogenesis, wound healing, and organization of bioengineered tissues. Our research focuses on how
these interactions regulate corneal keratocyte behavior, through development of culture models that mimic the
3-D tissue environment, and use of multi-dimensional imaging approaches in vitro, in situ and in vivo.
Research in the prior period using 3-D culture models demonstrated that matrix composition, stiffness and
structure can influence corneal keratocyte mechanical behavior and patterning in response to wound healing
cytokines and changes in Rho/Rac activation. In addition, using our custom-modified in vivo HRT-RCM
confocal microscope combined with ex vivo fluorescence and second harmonic generation (SHG) imaging, we
demonstrated for the first time that following freeze injury (FI) or lamellar keratectomy (LK) in the rabbit,
migrating fibroblasts within the wounded stroma form long interconnected streams that often run in parallel,
and that alignment of these cell streams is highly correlated with that of the collagen lamellae. In contrast, cells
migrating on top of the stroma following LK form a randomly arranged, interconnected, meshwork.
The biochemical factors which induce myofibroblast transformation and fibrotic tissue generation on top of the
stroma following injury or refractive surgery have been studied extensively. However, little is known about
biochemical and biophysical signals that regulate intra-stromal keratocyte behavior. The lamellar structure of
the cornea, combined with powerful in vivo and ex vivo imaging capabilities, provides us with a unique
opportunity to assess biophysical factors that regulate cell differentiation, migration and patterning within this
tissue. Aim 1 will use in vivo confocal microscopy and in situ fluorescent/SHG imaging in the rabbit to: a)
perform the first comprehensive comparison of intra-stromal and extra-stromal cell differentiation and
patterning following photorefractive keratectomy (PRK), and b) investigate whether intra-stromal and extra-
stromal phenotypes are differentially regulated. Aim 2 will investigate whether changes in ECM structure and
stiffness modulate cell patterning and mechanical phenotype during stromal repopulation by comparing
migration mechanisms in two distinct in vivo injury models. ECM structure and mechanical properties have
become increasingly recognized as key factors in determining cell growth, differentiation and activity
in a variety of cell types; thus our findings should have broad scientific impact. In order to isolate the
specific factors regulating these in vivo processes, Aim 3 will assess how cytokines and downstream Rho/Rac
signaling impact corneal keratocyte patterning, mechanical differentiation, fibronectin deposition and ECM
reorganization using multiple novel experimental models in vitro. With this approach we hope to identify the key
biochemical and biophysical signaling pathways that differentiate disruptive and non-disruptive cell patterning
behavior within 3-D matrices, which may lead to new strategies to modulate cell behavior in vivo.
项目摘要
细胞和细胞外基质(ECM)之间的机械相互作用驱动基本过程,
形态发生、伤口愈合和生物工程组织的组织化。我们的研究重点是如何
这些相互作用通过开发模拟角膜基质细胞的培养模型来调节角膜基质细胞的行为。
三维组织环境,以及在体外、原位和体内使用多维成像方法。
前期使用3-D培养模型的研究表明,基质成分、刚度和
结构可以影响角膜基质细胞机械行为和响应伤口愈合的图案
细胞因子和Rho/Rac活化的变化。此外,使用我们定制的改良体内HRT-RCM
共聚焦显微镜结合离体荧光和二次谐波发生(SHG)成像,我们
首次证明了在兔冷冻损伤(FI)或板层角膜切除术(LK)后,
受伤的基质内迁移的成纤维细胞形成通常平行流动的长的相互连接的流,
并且这些细胞流的排列与胶原层的排列高度相关。相反,细胞
在LK之后迁移到基质的顶部上形成随机排列的、互连的网状结构。
诱导肌成纤维细胞转化和纤维化组织产生的生化因素,
已经广泛研究了损伤或屈光手术后的基质。然而,人们对
调节基质内角膜细胞行为的生物化学和生物物理信号。层状结构
角膜与强大的体内和体外成像能力相结合,为我们提供了独特的
有机会评估调节细胞分化,迁移和图案化的生物物理因素,
组织.目的1将在兔中使用体内共聚焦显微镜和原位荧光/SHG成像,以:
进行基质内和基质外细胞分化的首次全面比较,
光折射性角膜切除术(PRK)后的图案化,和B)研究是否基质内和基质外
基质表型受到差异调节。目标2将研究ECM结构的变化和
通过比较基质再生过程中硬度调节细胞模式和机械表型
在两种不同的体内损伤模型中的迁移机制。ECM组织和力学性能具有
越来越被认为是决定细胞生长、分化和活性的关键因素
因此,我们的发现应该具有广泛的科学影响。为了隔离
调节这些体内过程的特定因子,目标3将评估细胞因子和下游Rho/Rac
信号传导影响角膜基质细胞图案形成、机械分化、纤连蛋白沉积和ECM
重组使用多种新的体外实验模型。通过这种方法,我们希望找到关键
区分破坏性和非破坏性细胞模式的生物化学和生物物理信号通路
行为的三维矩阵,这可能会导致新的策略来调节细胞的行为在体内。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
W MATTHEW PETROLL其他文献
W MATTHEW PETROLL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('W MATTHEW PETROLL', 18)}}的其他基金
Integration, Planning and Oversight of Core Activities
核心活动的整合、规划和监督
- 批准号:
10438807 - 财政年份:2019
- 资助金额:
$ 8.43万 - 项目类别:
Integration, Planning and Oversight of Core Activities
核心活动的整合、规划和监督
- 批准号:
10216268 - 财政年份:2019
- 资助金额:
$ 8.43万 - 项目类别:
相似海外基金
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
- 批准号:
23K16022 - 财政年份:2023
- 资助金额:
$ 8.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/Y003586/1 - 财政年份:2023
- 资助金额:
$ 8.43万 - 项目类别:
Training Grant
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/X009262/1 - 财政年份:2023
- 资助金额:
$ 8.43万 - 项目类别:
Training Grant
4D Imaging of Biofunctional Information by Multidimensional Measurement and Lightwave Manipulation of Scattered Light
通过多维测量和散射光的光波操纵对生物功能信息进行 4D 成像
- 批准号:
23KJ1570 - 财政年份:2023
- 资助金额:
$ 8.43万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
- 批准号:
10739431 - 财政年份:2023
- 资助金额:
$ 8.43万 - 项目类别:
4D imaging of the dynamic molecular, cellular and tissue organization in living systems
生命系统中动态分子、细胞和组织组织的 4D 成像
- 批准号:
BB/W020335/1 - 财政年份:2022
- 资助金额:
$ 8.43万 - 项目类别:
Research Grant
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2021
- 资助金额:
$ 8.43万 - 项目类别:
Discovery Grants Program - Individual
confocal microscope for 4D imaging of multicellular structure and activity
用于多细胞结构和活性 4D 成像的共焦显微镜
- 批准号:
465594799 - 财政年份:2021
- 资助金额:
$ 8.43万 - 项目类别:
Major Research Instrumentation
4D imaging of arterial-wall fiber structure under pulsatile conditions by using synchrotron radiation phase-contrast CT
使用同步辐射相衬 CT 对脉动条件下的动脉壁纤维结构进行 4D 成像
- 批准号:
20K21899 - 财政年份:2020
- 资助金额:
$ 8.43万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2020
- 资助金额:
$ 8.43万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




