Assessment of Corneal Fibroblast Biomechanical Behavior
角膜成纤维细胞生物力学行为的评估
基本信息
- 批准号:10211772
- 负责人:
- 金额:$ 40.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-02-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D ImagingAnisotropyAreaBehaviorBiochemicalBiomechanicsBiophysicsCell Differentiation processCellsCellular biologyClinicalCollagenCorneaDataDevelopmentDiseaseElementsEngineeringEnvironmentEventExtracellular MatrixF-ActinFibrinFibroblastsFibronectinsFibrosisFilamentFundingGrowth FactorIn SituIn VitroInjuryIntegrinsKeratoconusKnowledgeMechanicsModelingMorphogenesisMorphologyMyofibroblastNatural regenerationNatureNormal CellOperative Surgical ProceduresOryctolagus cuniculusPatternPenetrating KeratoplastyPhotorefractive KeratectomyPlayProceduresProcessPublishingRecoveryRegulationResearchResolutionRoleSignal PathwayStromal CellsStructureSurgical incisionsSystemTestingThickTimeTissue EngineeringTissuesVimentinbasebiophysical propertiescell behaviorcell motilityclinically relevantcorneal epithelial wound healingcorneal scarcrosslinkhealingimaging approachin vivoinsightmechanical behaviormechanical propertiesmechanotransductionmigrationmodels and simulationnovelreflectance confocal microscopyresponserestorationsecond harmonic generation imagingthree dimensional cell culturetissue regenerationtoolwoundwound bedwound healing
项目摘要
PROJECT SUMMARY
Mechanical interactions between cells and extracellular matrix (ECM) drive fundamental processes such as
morphogenesis, wound healing, and organization of bioengineered tissues. Our research focuses on how
these interactions regulate corneal keratocyte behavior through development of culture models that mimic the
3-D tissue environment, and use of multi-dimensional imaging approaches in vitro, in situ, and in vivo.
In the previous funding period, we used these tools to perform a comprehensive assessment of the
differentiation and patterning of corneal keratocytes following photorefractive keratectomy (PRK) surgery in the
rabbit. These studies provided novel insights into the nature of the transition between native stromal and
fibrotic tissue, and how cells use the collagen lamellae as a template for tissue remodeling and regeneration.
Subsequent studies combining superficial phototherapeutic keratectomy (PTK) and UV cross-linking (CXL)
showed that CXL induces a disruption in normal cell patterning within the stroma, and appears to block the
development of fibrosis on top of the stroma. These studies highlight the profound impact that changes in
corneal structure and stiffness can have on overall corneal wound healing responses. However, the
large size and overall symmetry of standard CXL procedures extends the normal time course of
healing after PTK, and limits the scope of biomechanical insights that can be made.
Using our in vitro 3D culture models, we also performed mechanistic studies on how cell spreading and
collective migration are regulated in fibrin matrices, and identified key roles for fibronectin, 51 integrin, and
local cell-induced matrix reorganization in this process. We also demonstrated for the first time, that inhibition
of vimentin filament organization alters corneal fibroblast spreading, morphology and motility in 3-D matrices.
Vimentin has been associated with myofibroblast transformation of corneal keratocytes in vivo, and
recent studies in other systems suggest it can play a central role in regulating key aspects of cell
mechanical behavior, including mechanosensing, polarization, and directional migration.
Based on these and other published and pilot data, we now propose to: 1) Investigate the effects of tissue
stiffness and anisotropy on corneal wound healing following PTK, by applying UV cross-linking in specific
patterns determined from finite element modeling simulations, 2) Establish the time course of cell differentiation
and cell/matrix patterning during the development and resolution (remodeling) of fibrosis following full thickness
incisional injury, and determine the effects of modulating the wound boundary conditions and mechanical
environment on these processes, and 3) Apply our established 3-D culture models and engineered 2-D
substrates to investigate the role of vimentin in regulating corneal fibroblast differentiation, patterning and
mechanical behavior. Given the general importance of cell mechanics in numerous fields of cell biology,
these findings could have broad significance.
项目摘要
细胞和细胞外基质(ECM)之间的机械相互作用驱动基本过程,
形态发生、伤口愈合和生物工程组织的组织化。我们的研究重点是如何
这些相互作用通过培养模型的发展来调节角膜基质细胞的行为,
三维组织环境,以及在体外、原位和体内使用多维成像方法。
在上一个资助期间,我们使用这些工具对
准分子激光屈光性角膜切除术(PRK)后角膜细胞的分化和模式化
兔子这些研究提供了新的见解之间的天然基质和过渡的性质,
纤维化组织,以及细胞如何使用胶原蛋白层作为组织重塑和再生的模板。
随后的研究结合了浅表光疗性角膜切除术(PTK)和UV交联(CXL)
表明CXL诱导基质内正常细胞模式的破坏,并似乎阻断了细胞的增殖。
基质上纤维化的发展。这些研究强调了变化的深刻影响,
角膜结构和硬度可能对整个角膜伤口愈合反应有影响。但
标准CXL手术的大尺寸和整体对称性延长了正常的时间进程
PTK后的愈合,并限制了生物力学的见解,可以作出的范围。
使用我们的体外3D培养模型,我们还对细胞如何扩散和增殖进行了机制研究。
集体迁移在纤维蛋白基质中受到调节,并确定了纤连蛋白、β 5 β 1整合素和
在这个过程中局部细胞诱导的基质重组。我们还首次证明,
波形蛋白丝组织的改变角膜成纤维细胞的蔓延,形态和运动在3-D矩阵。
波形蛋白与体内角膜基质细胞的肌成纤维细胞转化有关,
最近在其他系统中的研究表明,它可以在调节细胞的关键方面发挥核心作用。
机械行为,包括机械感测、极化和定向迁移。
基于这些和其他已发表和试点数据,我们现在建议:1)调查组织的影响,
在PTK后角膜伤口愈合的刚度和各向异性,通过在特定的
从有限元建模模拟确定的模式,2)建立细胞分化的时间过程
以及在全厚度后纤维化的发展和消退(重塑)期间的细胞/基质图案化
切口损伤,并确定调节伤口边界条件和机械
3)应用我们建立的三维培养模型和工程化的二维培养模型,
研究波形蛋白在调节角膜成纤维细胞分化、图案形成和
机械性能鉴于细胞力学在细胞生物学的许多领域中的普遍重要性,
这些发现可能具有广泛的意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
W MATTHEW PETROLL其他文献
W MATTHEW PETROLL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('W MATTHEW PETROLL', 18)}}的其他基金
Integration, Planning and Oversight of Core Activities
核心活动的整合、规划和监督
- 批准号:
10438807 - 财政年份:2019
- 资助金额:
$ 40.19万 - 项目类别:
Integration, Planning and Oversight of Core Activities
核心活动的整合、规划和监督
- 批准号:
10216268 - 财政年份:2019
- 资助金额:
$ 40.19万 - 项目类别:
相似海外基金
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
- 批准号:
23K16022 - 财政年份:2023
- 资助金额:
$ 40.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/Y003586/1 - 财政年份:2023
- 资助金额:
$ 40.19万 - 项目类别:
Training Grant
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/X009262/1 - 财政年份:2023
- 资助金额:
$ 40.19万 - 项目类别:
Training Grant
4D Imaging of Biofunctional Information by Multidimensional Measurement and Lightwave Manipulation of Scattered Light
通过多维测量和散射光的光波操纵对生物功能信息进行 4D 成像
- 批准号:
23KJ1570 - 财政年份:2023
- 资助金额:
$ 40.19万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
- 批准号:
10739431 - 财政年份:2023
- 资助金额:
$ 40.19万 - 项目类别:
4D imaging of the dynamic molecular, cellular and tissue organization in living systems
生命系统中动态分子、细胞和组织组织的 4D 成像
- 批准号:
BB/W020335/1 - 财政年份:2022
- 资助金额:
$ 40.19万 - 项目类别:
Research Grant
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2021
- 资助金额:
$ 40.19万 - 项目类别:
Discovery Grants Program - Individual
confocal microscope for 4D imaging of multicellular structure and activity
用于多细胞结构和活性 4D 成像的共焦显微镜
- 批准号:
465594799 - 财政年份:2021
- 资助金额:
$ 40.19万 - 项目类别:
Major Research Instrumentation
4D imaging of arterial-wall fiber structure under pulsatile conditions by using synchrotron radiation phase-contrast CT
使用同步辐射相衬 CT 对脉动条件下的动脉壁纤维结构进行 4D 成像
- 批准号:
20K21899 - 财政年份:2020
- 资助金额:
$ 40.19万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2020
- 资助金额:
$ 40.19万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




