Image analysis and machine learning methods for advanced MRI-neuropathology characterization
用于高级 MRI 神经病理学表征的图像分析和机器学习方法
基本信息
- 批准号:RGPIN-2018-03720
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Introduction
Image analysis and machine learning methods represent a paradigm shift and are playing an increasingly critical role in many fields. The potential of these methods in medical imaging includes disease prediction, personalization, and pathological grading. This research program focuses on advancing technologies to categorize pathology. Specifically, we aim to develop new image texture analysis and machine learning methods for accurate detection of injury and repair in brain white matter lesions, along with validation by digital pathology. Currently our target applications are in magnetic resonance imaging (MRI); however, our approaches can be applied in multiple other science and engineering fields such as geoscience, physics, engineering, and biology.
Under the current Discovery Grant (2012-2018), we have developed methods and tools to understand the multi-resolution pattern of MRI texture using localized spatial frequency analysis. We have shown that a specific type of white matter structure is related to a unique series of texture spectra, reflecting the unique forming scales and aligning directions of the structure. Further, the heterogeneity of MRI texture correlates strongly with the severity of pathology as shown using multiple sclerosis as an example. However, there are still critical unmet needs in both modeling and verification of individual lesion pathology.
Objective
The overall objective of this DG is to develop new texture analysis and machine learning methods for accurate and efficient mapping of neuropathology, particularly the degree of injury and repair in different types of brain white matter lesions. This includes 5 aims:
Aim 1: Develop new methods to extract the most critical MRI texture spectra
Aim 2: Discover approaches for best detecting tissue directionality in MRI
Aim 3: Design a method to integrate texture analysis with machine learning
Aim 4: Identify an algorithm for efficient quantification of digital pathology
Aim 5: Build a method to fuse MRI with digital pathology for single lesion identity
Approach
In Aim 1, we will investigate new spectrum assessing methods and identify the most useful texture spectra using principal component analysis. In Aim 2, we will evaluate phase congruency and other alignment assessing methods that best correlate with lesion severity. Aim 3 will determine a machine learning method for accurate lesion type classification based on new texture features. In Aim 4, we will develop new image analysis and machine learning methods for quantifying pathology images, and in Aim 5 we will compare MRI and pathological measures to establish a non-invasive method for assessing single lesion property.
Impact
The application of new texture analysis and machine learning methods to imaging will lead to the development of advanced technologies for various fields such as signal processing, geoscience, tissue engineer, and healthcare.
介绍
图像分析和机器学习方法代表了一种范式转变,在许多领域发挥着越来越重要的作用。这些方法在医学成像中的潜力包括疾病预测、个性化和病理分级。该研究计划的重点是推进病理分类技术。具体而言,我们的目标是开发新的图像纹理分析和机器学习方法,用于准确检测脑白色病变的损伤和修复,沿着数字病理学的验证。目前,我们的目标应用是磁共振成像(MRI);然而,我们的方法可以应用于多个其他科学和工程领域,如地球科学,物理学,工程学和生物学。
在当前的发现资助(2012-2018)下,我们开发了使用局部空间频率分析来理解MRI纹理的多分辨率模式的方法和工具。我们已经表明,一种特殊类型的白色物质结构与一系列独特的纹理谱有关,反映了该结构独特的形成尺度和排列方向。此外,MRI纹理的异质性与病理学的严重程度密切相关,如使用多发性硬化症作为示例所示。然而,在个体病变病理学的建模和验证方面仍然存在关键的未满足的需求。
目的
该DG的总体目标是开发新的纹理分析和机器学习方法,以准确有效地映射神经病理学,特别是不同类型脑白色病变的损伤和修复程度。这包括五个目标:
目的1:开发新的方法来提取最关键的MRI纹理谱
目标2:发现在MRI中最佳检测组织方向性的方法
目标3:设计一种将纹理分析与机器学习相结合的方法
目标4:确定一种有效量化数字病理学的算法
目的5:建立一种融合MRI与数字病理学的方法,以识别单个病变
方法
在目标1中,我们将研究新的光谱评估方法,并确定最有用的纹理光谱,使用主成分分析。在目标2中,我们将评估相位一致性和其他与病变严重程度最相关的对齐评估方法。目标3将确定一种机器学习方法,用于基于新的纹理特征进行准确的病变类型分类。在目标4中,我们将开发新的图像分析和机器学习方法来量化病理图像,在目标5中,我们将比较MRI和病理测量,以建立一种评估单个病变属性的非侵入性方法。
影响
新的纹理分析和机器学习方法在成像中的应用将导致信号处理、地球科学、组织工程和医疗保健等各个领域的先进技术的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhang, Yunyan其他文献
The complete chloroplast genome of Loropetalum subcordatum, a national key protected species in China
- DOI:
10.1007/s12686-018-1022-3 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:1.1
- 作者:
Zhang, Yunyan;Cai, Huixia;Wang, Zhongsheng - 通讯作者:
Wang, Zhongsheng
Characterizing Structural Changes With Devolving Remyelination Following Experimental Demyelination Using High Angular Resolution Diffusion MRI and Texture Analysis
- DOI:
10.1002/jmri.26328 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:4.4
- 作者:
Luo, Tim;Oladosu, Olayinka;Zhang, Yunyan - 通讯作者:
Zhang, Yunyan
Comparison of Conventional and Constrained Variational Methods for Computing Large‐Scale Budgets and Forcing Fields
计算大规模预算和强制场的传统方法和约束变分方法的比较
- DOI:
10.1029/2021jd035183 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ciesielski, Paul E.;Johnson, Richard H.;Tang, Shuaiqi;Zhang, Yunyan;Xie, Shaocheng - 通讯作者:
Xie, Shaocheng
Diffusion-weighted MRI of salivary glands with gustatory stimulation: comparison before and after radiotherapy
- DOI:
10.1177/0284185113491089 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:1.3
- 作者:
Zhang, Yunyan;Ou, Dan;Shen, Xigang - 通讯作者:
Shen, Xigang
Constitutive ERK1/2 activation contributes to production of double minute chromosomes in tumour cells.
ERK1/2 的组成型激活有助于肿瘤细胞中双微小染色体的产生。
- DOI:
10.1002/path.4439 - 发表时间:
2015-01 - 期刊:
- 影响因子:7.3
- 作者:
Sun, Wenjing;Quan, Chao;Huang, Yun;Ji, Wei;Yu, Lisa;Li, Xinxin;Zhang, Yang;Zheng, Zhibo;Zou, Hongyan;Li, Quanxiao;Xu, Ping;Feng, Yan;Li, Li;Zhang, Yunyan;Cui, Yunfu;Jia, Xueyuan;Meng, Xiangning;Zhang, Chunyu;Jin, Yan;Bai, Jing;Yu, Jingcui;Yu, Yang;Yang, Jianhua;Fu, Songbin - 通讯作者:
Fu, Songbin
Zhang, Yunyan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhang, Yunyan', 18)}}的其他基金
Image analysis and machine learning methods for advanced MRI-neuropathology characterization
用于高级 MRI 神经病理学表征的图像分析和机器学习方法
- 批准号:
RGPIN-2018-03720 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Image analysis and machine learning methods for advanced MRI-neuropathology characterization
用于高级 MRI 神经病理学表征的图像分析和机器学习方法
- 批准号:
RGPIN-2018-03720 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Image analysis and machine learning methods for advanced MRI-neuropathology characterization
用于高级 MRI 神经病理学表征的图像分析和机器学习方法
- 批准号:
RGPIN-2018-03720 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Image analysis and machine learning methods for advanced MRI-neuropathology characterization
用于高级 MRI 神经病理学表征的图像分析和机器学习方法
- 批准号:
RGPIN-2018-03720 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Novel Image Texture Analysis for Advanced Structure Characterization
用于高级结构表征的新颖图像纹理分析
- 批准号:
418737-2012 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Novel Image Texture Analysis for Advanced Structure Characterization
用于高级结构表征的新颖图像纹理分析
- 批准号:
418737-2012 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Novel Image Texture Analysis for Advanced Structure Characterization
用于高级结构表征的新颖图像纹理分析
- 批准号:
418737-2012 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Novel Image Texture Analysis for Advanced Structure Characterization
用于高级结构表征的新颖图像纹理分析
- 批准号:
418737-2012 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Novel Image Texture Analysis for Advanced Structure Characterization
用于高级结构表征的新颖图像纹理分析
- 批准号:
418737-2012 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Development of whole brain myelin sensitive magnetic resonance exam by animal model
全脑髓磷脂敏感磁共振检查动物模型的建立
- 批准号:
304838-2004 - 财政年份:2005
- 资助金额:
$ 2.04万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
利用全基因组关联分析和QTL-seq发掘花生白绢病抗性分子标记
- 批准号:31971981
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
利用多个实验群体解析猪保幼带形成及其自然消褪的遗传机制
- 批准号:31972542
- 批准年份:2019
- 资助金额:57.0 万元
- 项目类别:面上项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多目标诉求下我国交通节能减排市场导向的政策组合选择研究
- 批准号:71473155
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于物质流分析的中国石油资源流动过程及碳效应研究
- 批准号:41101116
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Histopathology image analysis for prostate cancer prognosis after radical prostatectomy
前列腺癌根治术后预后的组织病理学图像分析
- 批准号:
478494 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Operating Grants
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
- 批准号:
10805177 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Computational Image Analysis of Renal Transplant Biopsies to Predict Graft Outcome
肾移植活检的计算图像分析以预测移植结果
- 批准号:
10733292 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Machine learning based image analysis for phenotyping to speed up barley breeding
基于机器学习的图像分析用于表型分析以加速大麦育种
- 批准号:
2869831 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
Construction of big data analysis platform for fish behavior in the sea by image processing, change detection, and machine learning techniques
利用图像处理、变化检测、机器学习技术构建海洋鱼类行为大数据分析平台
- 批准号:
23K14005 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Image-based risk assessment to identify women at high-risk for breast cancer
基于图像的风险评估可识别乳腺癌高危女性
- 批准号:
10759110 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Data Science and Medical Image Analysis Training for Improved Health Care Delivery in Nigeria - DATICAN
数据科学和医学图像分析培训以改善尼日利亚的医疗保健服务 - DATICAN
- 批准号:
10719097 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Development of CT image-based cranial bone markers of intra-cranial hypertension
基于CT图像的颅内高压颅骨标志物的开发
- 批准号:
10590419 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别: