Low Temperature Plasma Etching of Copper to Minimize Size Effects in Sub-100 nm Features
铜的低温等离子蚀刻可最大限度地减少 100 nm 以下特征的尺寸效应
基本信息
- 批准号:0755607
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-15 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-0755607HessThe increased complexity of integrated circuits (ICs) has yielded progressively enhanced capabilities, performance and reliability, while the IC cost per function has dropped continuously. These accomplishments have placed severe requirements on the density of interconnects used to connect the millions of transistors manufactured simultaneously. In order to meet the speed requirements for current and future generations of ICs, copper (Cu) has virtually replaced aluminum as the interconnect material. Because of an inability to develop an effective subtractive plasma-based etch process for Cu at temperatures below 180oC, damascene technology is used to pattern Cu films. Here, subtractive etching of Cu is avoided by electroplating Cu into plasma-etched dielectric trenches. Chemical mechanical planarization (CMP) is then used to remove the Cu overcoated above the trenches and dielectric, thereby creating Cu patterns. Unfortunately, the electrical resistivity of electroplated Cu increases rapidly as lateral dimensions are reduced below 100 nm; this "size effect" in electrical resistivity is a critical limitation to future device generations in the IC industry since it reduces circuit speed and can have an adverse effect on the reliability of local interconnects. In addition, control of the CMP process as well as its environmental and economic impact, are problematic. Intellectual Merit:The intellectual merit of the project involves the development of a novel low temperature Cu etch process that will facilitate improved Cu interconnect designs with higher efficiencies, enhanced speed and reduced power consumption. Thermodynamic analyses have suggested that Cu might be etched by using a two-step process: plasma chlorination of Cu surfaces followed by formation and desorption of Cu3Cl3 using a H2 plasma. Preliminary results have demonstrated the ability to etch Cu below room temperature using this approach and thus suggest that a process to plasma etch/pattern Cu films at low temperatures is possible. This research will allow the IC industry to overcome a major problem and limitation impeding the advance of semiconductor technology. This work will develop a fundamental understanding of the proposed two-step plasma process for Cu patterning and will perform preliminary pattern definition studies to evaluate the ability to anisotropically etch patterns and thus assess the potential for large scale IC manufacture. The project is ideal for chemical engineering graduate students in that experimental studies are combined with fundamental thermodynamics and kinetics investigations to address a critical industrial problem. Broader ImpactThe broader impacts of the project include: (1) mitigate size effects in Cu interconnects thereby removing a limitation currently existing for the advancement of IC technology, (2) develop a more environmentally benign, lower cost, effective method of patterning Cu films, (3) provide molecular level information regarding the controlling steps in low temperature etching of Cu, (4) develop novel examples and case studies for undergraduate and graduate ChBE courses, (5) educate/train minority undergraduate and high school students each summer who participate in the Georgia Tech Summer Undergraduate Research in Engineering (SURE) Program at Georgia Tech, (6) educate high school students and teachers in IC fabrication and environmental issues through the National Nanotechnology Infrastructure Network (NNIN) site at Georgia Tech and through the PI?s personal contacts in local high schools.
随着集成电路(IC)复杂性的不断提高,其功能、性能和可靠性也在不断增强,而每项功能的IC成本也在不断下降。这些成就对用于连接同时制造的数百万个晶体管的互连密度提出了严格的要求。为了满足当前和未来几代IC的速度要求,铜(Cu)实际上已经取代铝作为互连材料。由于无法在低于180 ℃的温度下开发出有效的基于减法等离子体的Cu蚀刻工艺,因此使用CVD技术来图案化Cu膜。这里,通过将Cu电镀到等离子体蚀刻的电介质沟槽中来避免Cu的减蚀。然后使用化学机械平坦化(CMP)来去除沟槽和电介质上方的Cu外涂层,从而产生Cu图案。不幸的是,电镀Cu的电阻率随着横向尺寸减小到100 nm以下而迅速增加;电阻率中的这种“尺寸效应”是IC工业中未来器件世代的关键限制,因为它降低了电路速度并且可能对局部互连的可靠性产生不利影响。此外,CMP工艺的控制及其环境和经济影响也是有问题的。智力优势:该项目的智力优势包括开发一种新型低温Cu蚀刻工艺,该工艺将有助于改进Cu互连设计,提高效率,提高速度并降低功耗。 热力学分析表明,铜可能被蚀刻通过使用两个步骤的过程:等离子体氯化的铜表面,然后形成和解吸的Cu 3Cl 3使用H2等离子体。初步结果已经证明了使用这种方法在低于室温下蚀刻Cu的能力,因此表明在低温下等离子体蚀刻/图案化Cu膜的工艺是可能的。这项研究将使集成电路工业克服阻碍半导体技术进步的主要问题和限制。 这项工作将开发一个基本的理解,提出的两步等离子体工艺的铜图案,并将进行初步的图案定义的研究,以评估各向异性蚀刻图案的能力,从而评估大规模集成电路制造的潜力。该项目是化学工程研究生的理想选择,因为实验研究与基础热力学和动力学研究相结合,以解决关键的工业问题。更广泛的影响项目的更广泛的影响包括:(1)减轻Cu互连中的尺寸效应,从而消除目前存在的对IC技术进步的限制,(2)开发更环保、更低成本、有效的Cu膜图案化方法,(3)提供关于Cu的低温蚀刻中的控制步骤的分子水平信息,(4)为本科生和研究生ChBE课程开发新的例子和案例研究,(5)每年夏天教育/培训参加格鲁吉亚理工学院格鲁吉亚理工学院夏季本科生工程研究(SURE)项目的少数民族本科生和高中生,(6)通过格鲁吉亚理工学院的国家纳米技术基础设施网络(NNIN)和PI,对高中学生和教师进行IC制造和环境问题的教育。他在当地高中的私人关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dennis Hess其他文献
Dennis Hess的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dennis Hess', 18)}}的其他基金
MRSEC: The Georgia Tech Laboratory for New Electronic Materials
MRSEC:佐治亚理工学院新型电子材料实验室
- 批准号:
0820382 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
GOALI: Photoresist Dissolution and Stripping in Gas Expanded Liquids
目标:气体膨胀液体中的光刻胶溶解和剥离
- 批准号:
0343142 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
LT: Removal of Organic Films and Contaminants from Surfaces Using Elevated Pressure, Elevated Temperature Water
LT:使用高压、高温水去除表面的有机薄膜和污染物
- 批准号:
9727249 - 财政年份:1997
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Plasma Oxidation/Anodization of Silicon Films for Photovoltaic and Flat Panel Display Applications
用于光伏和平板显示应用的硅薄膜的等离子体氧化/阳极氧化
- 批准号:
9214138 - 财政年份:1992
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Engineering Creativity Award: Microwave Plasma Induced Oxidation of Semiconductor
工程创意奖:微波等离子体诱导半导体氧化
- 批准号:
8710988 - 财政年份:1987
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Morphology, Structure, and Adhesion of Plasma-Deposited ThinFilms
等离子体沉积薄膜的形态、结构和附着力
- 批准号:
8611473 - 财政年份:1987
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Etching of Aluminum in Halogen-Containing Gasses and Plasmas
含卤素气体和等离子体中的铝蚀刻
- 批准号:
8319353 - 财政年份:1984
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Plasma Etching of Aluminum For Integrated Circuits Applications
用于集成电路应用的铝等离子蚀刻
- 批准号:
8021508 - 财政年份:1981
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Plasma Etching of Thin Films For Integrated Circuits
集成电路薄膜的等离子蚀刻
- 批准号:
7812236 - 财政年份:1979
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Low-Temperature Plasma Assisted Combustion of Oxygenated Fuels for Cleaner and Sustainable Mobility
职业:低温等离子体辅助含氧燃料燃烧,实现更清洁和可持续的交通
- 批准号:
2237492 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Elucidation of surface-launched plasma bullet generation mechanism and its application to large-volume atmospheric-pressure low-temperature plasma generation
地射等离子体弹产生机理的阐明及其在大体积常压低温等离子体产生中的应用
- 批准号:
23H01166 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Data-driven approach for advanced control of immune system by using low-temperature plasma
利用低温等离子体对免疫系统进行高级控制的数据驱动方法
- 批准号:
23H01404 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Low Temperature Plasma as an Approach for the Treatment of Peri-Implantitis
低温血浆治疗种植体周围炎的方法
- 批准号:
10730244 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Formation of double roughness structures on surface of polymer blend film using atmospheric pressure low temperature plasma
利用常压低温等离子体在聚合物共混膜表面形成双粗糙结构
- 批准号:
22K04251 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Precise structure control of nano-composite films in low-temperature plasma reaction field with fast flow
快流低温等离子体反应场纳米复合薄膜的精确结构控制
- 批准号:
21H01076 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effect of supply gas type and concentration on maintaining freshness of agricultural products by atmospheric low temperature plasma
供气类型及浓度对常压低温等离子体保鲜农产品的影响
- 批准号:
21K05845 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel Low-Temperature Plasma-Catalyst Control of Dioxin & Furan Emissions from Waste Incinerators
二恶英的新型低温等离子体催化剂控制
- 批准号:
EP/V036696/1 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Molecular Mechanism of recognition of external information in seeds against low temperature plasma irradiation
低温等离子体辐照种子识别外部信息的分子机制
- 批准号:
20H01893 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Ammonia synthesis using low and high electron temperature coexisting plasma with spiral magnetic field
螺旋磁场低、高电子温度共存等离子体合成氨
- 批准号:
20K20909 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)