SGER: Cooperative Learning-unlearning Algorithms for Identification of Robust Auditory Manifolds
SGER:用于识别鲁棒听觉流形的合作学习-忘却算法
基本信息
- 批准号:0836278
- 负责人:
- 金额:$ 6.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Small Grant for Exploratory Research is investigating a framework of learning and unlearning algorithms that can be used for identifying noise robust auditory features.Even though most speech based recognition systems deliver robust performance under controlled laboratory conditions, their performance degrades significantly in presence of noise primarily due to mismatch between training and deployment conditions. The proposed exploratory study investigates the possibility of using information embedded in higher-order spectral and temporal manifolds which could remain intact even in the presence of ambient noise. Estimation of these non-linear manifolds in presence of noise, however, poses a significant challenge and is the focus of this study. We are investigating proof-of-concept features based on cooperative learning-unlearning (CLU) algorithms that estimates manifold parameters in a reproducing kernel Hilbert space (RKHS) spanned by speech signals. We are evaluating the robustness of these features in presence of room acoustics and background noise. The broader impact of this exploratory study will be development of enabling technology that can be used in the area of voice based biometrics, where seamless authentication can be performed over the internet, cell phones or other voice based media. The educational impact of the study includes graduate student training and development of public domain software tools for CLU algorithms which will be available to the scientific community.
这项探索性研究的小额资助正在研究一个学习和非学习算法的框架,该框架可用于识别噪声鲁棒的听觉特征。尽管大多数基于语音的识别系统在受控的实验室条件下提供鲁棒的性能,但它们的性能在噪声存在下会显着下降,主要是由于训练和部署条件之间的不匹配。拟议的探索性研究调查的可能性,使用嵌入在高阶频谱和时间流形,即使在环境噪声的存在下,可以保持完整的信息。这些非线性流形的存在噪声的估计,但是,构成了一个重大的挑战,是本研究的重点。我们正在研究概念验证功能的基础上合作学习-非学习(CLU)算法,估计流形参数的再生核希尔伯特空间(RKHS)跨越语音信号。我们正在评估这些功能在室内声学和背景噪声存在下的鲁棒性。这项探索性研究的更广泛影响将是开发可用于基于语音的生物识别领域的使能技术,其中可以通过互联网,手机或其他基于语音的媒体进行无缝认证。该研究的教育影响包括研究生培训和CLU算法的公共领域软件工具的开发,这些软件工具将提供给科学界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shantanu Chakrabartty其他文献
A compact and energy-efficient ultrasound receiver using PTAT reference circuit
- DOI:
10.1016/j.mejo.2019.104656 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:
- 作者:
Yarub Alazzawi;Oindrila Chatterjee;Shantanu Chakrabartty - 通讯作者:
Shantanu Chakrabartty
Towards packet-less ultrasonic sensor networks for energy-harvesting structures
- DOI:
10.1016/j.comcom.2016.11.001 - 发表时间:
2017-03-15 - 期刊:
- 影响因子:
- 作者:
Saptarshi Das;Hadi Salehi;Yan Shi;Shantanu Chakrabartty;Rigoberto Burgueno;Subir Biswas - 通讯作者:
Subir Biswas
Co-detection: Ultra-reliable nanoparticle-based electrical detection of biomolecules in the presence of large background interference
- DOI:
10.1016/j.bios.2010.08.067 - 发表时间:
2010-11-15 - 期刊:
- 影响因子:
- 作者:
Yang Liu;Ming Gu;Evangelyn C. Alocilja;Shantanu Chakrabartty - 通讯作者:
Shantanu Chakrabartty
Shantanu Chakrabartty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shantanu Chakrabartty', 18)}}的其他基金
RCN-SC: Research Coordination Network for Design and Testing of Neuromorphic Integrated Circuits
RCN-SC:神经形态集成电路设计和测试的研究协调网络
- 批准号:
2332166 - 财政年份:2023
- 资助金额:
$ 6.2万 - 项目类别:
Continuing Grant
EAGER: Exploiting Quantum Tunneling for Zero Side-Channel Key Generation and Distribution
EAGER:利用量子隧道实现零侧信道密钥生成和分发
- 批准号:
2237004 - 财政年份:2022
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Energy-Efficient Persistent Learning-in-Memory with Quantum Tunneling Dynamic Synapses
合作研究:FET:中:具有量子隧道动态突触的节能持久内存学习
- 批准号:
2208770 - 财政年份:2022
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
Addressing neuron-to-network energy-efficiency gap by investigating neuromorphic processors as a unified dynamical system
通过研究神经形态处理器作为统一的动态系统来解决神经元到网络的能效差距
- 批准号:
1935073 - 财政年份:2019
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
CPS:TTP Option: Synergy: Collaborative Research: Internet of Self-powered Sensors - Towards a Scalable Long-term Condition-based Monitoring and Maintenance of Civil Infrastructure
CPS:TTP 选项:协同:协作研究:自供电传感器互联网 - 实现民用基础设施可扩展的长期基于状态的监测和维护
- 批准号:
1646380 - 财政年份:2016
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
Scavenging Thermal-noise Energy and Quantum Fluctuations for Self-powered Time-stamping and Sensing
清除热噪声能量和量子涨落以实现自供电时间戳和传感
- 批准号:
1550096 - 财政年份:2015
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
STARSS: Small: Collaborative: Zero-Power Dynamic Signature for Trust Verification of Passive Sensors and Tags
STARSS:小型:协作:用于无源传感器和标签的信任验证的零功耗动态签名
- 批准号:
1525476 - 财政年份:2015
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
Scavenging Thermal-noise Energy and Quantum Fluctuations for Self-powered Time-stamping and Sensing
清除热噪声能量和量子涨落以实现自供电时间戳和传感
- 批准号:
1505767 - 财政年份:2015
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
SHF: Small: FAST: A Simulation and Analysis Framework for Designing Large-Scale Biomolecular-Silicon Hybrid Circuits
SHF:小型:FAST:用于设计大规模生物分子硅混合电路的仿真和分析框架
- 批准号:
1533905 - 财政年份:2014
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
CAREER: Integrated Research and Education in Self-powered Micro-sensing for Embedded and Implantable Structural Health Monitoring
职业:嵌入式和植入式结构健康监测自供电微传感的综合研究和教育
- 批准号:
1533532 - 财政年份:2014
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
相似海外基金
Theoretical foundations of cooperative learning as dynamic processes ofnetwork dynamics
合作学习作为网络动态过程的理论基础
- 批准号:
23K17619 - 财政年份:2023
- 资助金额:
$ 6.2万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Self-adaptive and Cooperative Multi-agent Reinforcement Learning-based Network Traffic Control
基于强化学习的自适应协作多智能体网络流量控制
- 批准号:
23K19982 - 财政年份:2023
- 资助金额:
$ 6.2万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
A Comprehensive Study on Mutual Teaching in a Hybrid Cooperative Learning Environment with Coexisting Learners and AI
共存学习者与人工智能混合合作学习环境下互教的综合研究
- 批准号:
23H03510 - 财政年份:2023
- 资助金额:
$ 6.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Building the next generation of intelligent machines with cooperative deep learning.
通过协作深度学习构建下一代智能机器。
- 批准号:
RGPIN-2022-05088 - 财政年份:2022
- 资助金额:
$ 6.2万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Learning to Secure Cooperative Multi-Agent Learning Systems: Advanced Attacks and Robust Defenses
职业:学习保护协作多代理学习系统:高级攻击和强大的防御
- 批准号:
2146548 - 财政年份:2022
- 资助金额:
$ 6.2万 - 项目类别:
Continuing Grant
Development of English Learning Content through Cooperative Learning to Improve Motivation and Increase Learning Time
通过合作学习开发英语学习内容以提高动机并增加学习时间
- 批准号:
22K00805 - 财政年份:2022
- 资助金额:
$ 6.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Building the next generation of intelligent machines with cooperative deep learning.
通过协作深度学习构建下一代智能机器。
- 批准号:
DGECR-2022-00422 - 财政年份:2022
- 资助金额:
$ 6.2万 - 项目类别:
Discovery Launch Supplement
Cooperative adaptive cruise control with vehicle trajectory prediction using machine learning techniques
使用机器学习技术进行车辆轨迹预测的协作式自适应巡航控制
- 批准号:
571295-2021 - 财政年份:2022
- 资助金额:
$ 6.2万 - 项目类别:
Alliance Grants
“Autonomous Flying Fire Blanket”: New Adaptive And Learning Architectures For Multi-UAV Cooperative Formation With Firefighting Applications
– 自主飞行消防毯 –:用于消防应用的多无人机协作编队的新自适应和学习架构
- 批准号:
2131802 - 财政年份:2022
- 资助金额:
$ 6.2万 - 项目类别:
Standard Grant
Cooperative Strategy Learning and Knowledge Evolution to Adapt to Dynamism in Unknown Cooperation and Environment in Multi-agent System
多智能体系统中适应未知合作和环境动态的合作策略学习和知识进化
- 批准号:
21KK0206 - 财政年份:2022
- 资助金额:
$ 6.2万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))