超局所解析による非線形偏微分方程式

使用超局部分析的非线性偏微分方程

基本信息

  • 批准号:
    09740089
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

1. この研究の主目的は、ボルツマン方程式の拡張された速度離散モデルを調べることにあるが、最終目的は、より広範囲の流体力学の方程式を解明することにある。2. (1)P.L.Lionsらによって、ボルツマン方程式を「解く」ことが流体力学の種々の方程式を「解く」ことにつながることが示されているので、この研究の最終目的は、これらの流体力学の方程式の離散モデルの解の様子を把握することにある。(2)この研究を進めていく中、P.Gerardによって導入された超局所欠損速度が、双曲型保存則型の一つであり、多孔質媒体方程式の論理的基礎でもあるp-systemをより一般にした方程式に適用できることが分かってきた。則ち、DiPernaがcompensatedcompactnessを用いて、p-systemが強双曲型であるという仮定の下に解の存在を示したが、compensated compactnessおよび(ボルツマン方程式のkey lemmaである)平均補題を包括する超局所欠損速度を用いれば、方程式に対する強双曲型の仮定を弱められないかということである。この研究は現在進行中である。3.ボルツマン方程式の拡張された速度離散モデルとは、非線形項として、標準的なモデルにある2次形式および線形拡散項の1次形式を共に考慮した方程式系のことをいう。この方程式の初期値問題に関するオプティマルな結果と、有界な解を得るための初期値と方程式の係数に関する十分条件を論文で整理した。今後は、解の漸近挙動に関する結果、則ち波動作用素や逆散乱問題を研究したい。標準的なモデルに関しては、後者の問題はすてにBony教授により解決されているものの、拡張されたモデルに関しては結果がなく、前者の問題は、標準的なモデルに関しても結果が得られていないが、博士論文の中にこの問題につながる結果が得られているので、それをもとに研究したい。
1. The main purpose of this study is to solve the equations of fluid dynamics. 2. (1) P. L.Lions 'equations are solved. The ultimate goal of this study is to understand the discrete solutions of the equations of fluid dynamics. (2)This research is carried out in the following ways: P.Gerard's introduction of super-local loss velocity, hyperbolic preservation model, logical basis of porous media equation, p-system, general equation, application, etc. Then, DiPerna compensated compactness The research is ongoing. 3. The expansion of the equation is velocity dispersion, non-linear term, standard second-order form and linear dispersion term are considered together. The initial value of the equation is related to the result, the bounded solution and the initial value of the equation. In the future, the asymptotic behavior of solutions is related to the results, then the ratio of action elements and the inverse scattering problem are studied. The problem of the former is solved by Professor Bony, the problem of the latter is solved by Professor Bony, the problem of the former is solved by Professor Bony, the problem of the latter is solved by Professor Bony, the problem of the former is solved by Professor B

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mitsuru YAMAZAKI: "“Several classes of the initial data for the discrete velocities models of the Boltzmann equations with linear and quadratic terms"" Proceeding of The Symposium on Applied Mathematics,wavelet,chaos and nonlinear PDEs, Science Bulletin o
Mitsuru YAMAZAKI:““具有线性项和二次项的玻尔兹曼方程的离散速度模型的几类初始数据””应用数学、小波、混沌和非线性偏微分方程研讨会论文集,《科学通报》
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

山崎 満其他文献

Si microprobe array chips for in-vive recording of neural a ctivity
用于活体记录神经活动的硅微探针阵列芯片
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山崎 満;松本高志;M. Ishida
  • 通讯作者:
    M. Ishida
表面変状を含むコンクリート画像からのひび割れ自動抽出手法の開発-閾値自動選定および領域拡張手法を用いて-
开发包含表面变形的混凝土图像自动裂缝提取方法 - 使用自动阈值选择和区域扩展方法 -
表面変状を含むコンクリート画像からのひび割れ自動抽出手法の開発-闘値自動選定および領域拡張手法を用いて-
开发从包括表面变形在内的混凝土图像中自动提取裂缝的方法 - 使用自动阈值选择和区域扩展方法 -

山崎 満的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('山崎 満', 18)}}的其他基金

超局所解析による非線形偏微分方程式
使用超局部分析的非线性偏微分方程
  • 批准号:
    15740083
  • 财政年份:
    2003
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
超局所解析による非線形偏微分方程式
使用超局部分析的非线性偏微分方程
  • 批准号:
    13740089
  • 财政年份:
    2001
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
超局所解析による非線形偏微分方程式
使用超局部分析的非线性偏微分方程
  • 批准号:
    11740083
  • 财政年份:
    1999
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
超局所解析による非線型偏微分方程式
使用超局部分析的非线性偏微分方程
  • 批准号:
    08740086
  • 财政年份:
    1996
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
数理物理学に現われる非線形方程式の時間大域解の存在に関する研究
数学物理中非线性方程组时间全局解的存在性研究
  • 批准号:
    05740084
  • 财政年份:
    1993
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

過渡的網目の非線形粘弾性解析: ひずみエネルギー密度関数解析とその分子論の解明
瞬态网络的非线性粘弹性分析:应变能密度函数分析及其分子理论阐明
  • 批准号:
    24K08509
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
作用素環論と関数解析的群論の展開
算子代数理论和泛函解析群论的发展
  • 批准号:
    24K00527
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
対称マルコフ過程の経路解析と関数解析的性質
对称马尔可夫过程的路径分析和泛函分析性质
  • 批准号:
    23K25773
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
関数解析的手法による走化性方程式系の可解性と正則性の解明
使用泛函分析方法阐明趋化方程组的可解性和规律性
  • 批准号:
    24K16954
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ジャイロベクトル空間の関数解析的研究
陀螺矢量空间的泛函分析研究
  • 批准号:
    21K03288
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
超対称性を持つ統計力学模型の関数解析的な研究
超对称统计力学模型的泛函分析研究
  • 批准号:
    21K03290
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
銀河の多点相関関数解析を用いたダークエネルギーの制限
使用星系多点相关函数分析限制暗能量
  • 批准号:
    19K14703
  • 财政年份:
    2019
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
アトラクティブポイントを用いた不動点理論に基づく非線形関数解析・非線形問題の究明
基于不动点理论的非线性函数分析和非线性问题研究
  • 批准号:
    19K03582
  • 财政年份:
    2019
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
作用素環論による諸問題への非可換関数解析的な取り組み
使用算子代数理论解决各种问题的非交换泛函分析方法
  • 批准号:
    10F00326
  • 财政年份:
    2010
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
汎関数解析学とファインマン経路積分の数学的研究
泛函分析和费曼路径积分的数学研究
  • 批准号:
    21654023
  • 财政年份:
    2009
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了