ベーテ仮説法の数理

数学贝特假设法

基本信息

  • 批准号:
    09740327
  • 负责人:
  • 金额:
    $ 1.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

1. デマジュール加群の結晶基底デマジュール加群の結晶基底がパスによりどう実現されるかについての一般的な定理を得た。これを用いて、デマジュール結晶の具体形を非例外型の量子アフィン代数の典型的な場合について決定し、その指標と格子模型の1次元状態和との関係を明らかにした。2. 有限温度臨界XXZ模型XXZ模型でqが1のべき根に相当する場合に、Takahashi-Suzuki数という数を用いたストリング仮説が用いられる。我々は、転送行列の関数方程式が、ちょうどTakahashi-Suzuki数のフュージョン階数をもつもののみで閉じることを発見し、量子転送行列の手法でtransverse,longitudinal相関長についての積分方程式を導いた。数値解析によりこれを解き、低温で共形場理論と整合する温度依存性をグラフとして得た。3. 1次元状態和のフェルミオン的公式一般の非ねじれ型アフィンリー環について有限次元既約表現の結晶基底の存在や性質、それらから構成される非一様な古典制限バスの1次元状態和のフエルミオン的公式を予想した。特に、A型の場合は非制限パスの1次元状態和についてもフェルミオン的表示を得、その極限として、ストリング関数の公式に新たな証明を与えた。また、パスの長さ無限大の極限においてフェルミオン的公式はスピノン指標公式に帰着することを証明した。更にq=1では全てのルート系に対し上記の古典制限1次元状態和についての予想を弱い形ではあるが証明した。4. 有限結晶とパスperfectとは限らない結晶からなるパスを導入し、その表現論的意味付けを行った。典型的な例として、C型では、そのようなパスがA加群をC加群とみなしたものとのテンソル積の結晶と一致することを証明した。また、A型ではレベルの異なるperfect結晶のテンソル積をユニットとして構成されるパスが、最高ウエイト表現の結晶のテンソル積になることを証明した。これらはいづれもベーテ仮説の結果の表現論的な背景をなす。5. q=0のベーテ方程式と組み合わせ論的完全性q=0におけるベーテ方程式の解の個数をストリング仮説に基づいて数え上げる公式を提唱した。これにより、従来のq=1における組み合わせ論的完全性と相補的ともいえるウエイト多重度についての公式がA.B,C,D型で証明された。
1. The general theorem of crystal substrate of the group is obtained. In this case, the concrete form of crystal is not exceptional, the quantum algebra is typical, and the index and the lattice model are 1-dimensional states and relations. 2. The finite temperature critical XXZ model q = 1 is equivalent to the Takahi-Suzuki number. The equation of the correlation of the quantum matrix is derived from the inverse,longitudinal correlation of the integral equation of the Takahi-Suzuki number. The temperature dependence of conformal field theory at low temperature is obtained by numerical analysis. 3. The formula of 1-dimensional state and 1-dimensional state is generally non-uniform, and the formula of finite dimensional state is non-uniform, and the formula of finite dimensional state is non-uniform. In particular, in the case of type A, the expression of the non-limiting state and the non-limiting state is obtained, and the new formula of the non-limiting state is proved. The formula of infinite length is proved by the formula of infinite length. In addition, q=1 is a complete set of systems that correspond to the classical system of 1-dimensional states and weak forms. 4. The finite crystal is perfect, and the finite crystal is perfect. A typical example is that Type C is the crystallization and consistency of the integrated product of A plus group and C plus group. The crystal structure of type A and type A is proved to be perfect. The background of the performance theory of this paper is: 5. q=0 The completeness of the equation and the set of equations q=0 The number of solutions to the equation q=0 The number of solutions to the equation q = 0 The completeness of the theory is proved by the formula A.B,C,D.

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.N.Kirillov: "Skew Young diagram method in spectral decomposition of Integrable lattice models" Commun.Math.Phys.185. 441-465 (1997)
A.N.Kirillov:“可积晶格模型谱分解中的斜杨图方法”Commun.Math.Phys.185。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.T.Batchelor et al: "Free energies and critical exponents of the A^<111>_1,B^<111>_n,B^<111>_n,C^<111>_n and D^<111>_n face models" J.Phys.Soc.Jpn. 66. 913-916 (1997)
M.T.Batchelor 等人:“A^<111>_1、B^<111>_n、B^<111>_n、C^<111>_n 和 D^<111>_n 面模型的自由能和临界指数”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Knniba et al: "Crystals for Demagure modules of classical affine Lie algebras" Journal of Algebra. 208. 185-215 (1998)
A.Knniba 等人:“经典仿射李代数 Demagure 模的晶体”代数杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Kuniba: "Characters of Demazure modules and Solvable lattice models" Nucl.Phys.B.[Physical Mathematics]. 510. 555-576 (1998)
A.Kuniba:“Demazure 模块和可解晶格模型的特征”Nucl.Phys.B.[物理数学]。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Kuniba: "Crystals for Demazure modules of Classical Affine Lie Algebras" Journal of Algebra. (掲載予定).
A.Kuniba:“经典仿射李代数的 Demazure 模块的晶体”代数杂志(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

国場 敦夫其他文献

Phase Diagram of the Two-Species TASEP with Open Boundaries
具有开放边界的两种物质 TASEP 的相图
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    有田 親史;国場 敦夫;堺 和光;沢辺 剛;有田 親史;Chikashi Arita
  • 通讯作者:
    Chikashi Arita
Driven-Difftisive Systems with Stationary Prodcut Measure
具有固定产品测量的驱动扩散系统
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    有田 親史;国場 敦夫;堺 和光;沢辺 剛;有田 親史
  • 通讯作者:
    有田 親史
Springer briefs in mathematical physics
施普林格数学物理学简介
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Berestycki;Mihalis Dafermos;江口 徹;国場 敦夫;M. Marcolli;B. Nachtergaele
  • 通讯作者:
    B. Nachtergaele

国場 敦夫的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('国場 敦夫', 18)}}的其他基金

3次元可積分性と量子クラスター代数
3D 可积性和量子簇代数
  • 批准号:
    24K06882
  • 财政年份:
    2024
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elliptic hypergeometric integrals in classical and quantum integrable systems
经典和量子可积系统中的椭圆超几何积分
  • 批准号:
    16F16318
  • 财政年份:
    2016
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
可解格子模型における差分方程式系
可解晶格模型中的差分方程组
  • 批准号:
    08740335
  • 财政年份:
    1996
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
可解格子模型におけるベ-テ仮説法の数理
可解晶格模型中 Bethe 假设方法的数学
  • 批准号:
    07210218
  • 财政年份:
    1995
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
可解格子模型における関数方程式とその応用
函数方程及其在可解晶格模型中的应用
  • 批准号:
    06221259
  • 财政年份:
    1994
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
可解格子模型の解析
可解晶格模型分析
  • 批准号:
    06740164
  • 财政年份:
    1994
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
可解格子模型の解析
可解晶格模型分析
  • 批准号:
    04740114
  • 财政年份:
    1992
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
可解格子模型の解析およびその数理物理への応用
可解晶格模型分析及其在数学物理中的应用
  • 批准号:
    01790250
  • 财政年份:
    1989
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似国自然基金

量子群及相关范畴的表示理论
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
离散可积系统的对称与动力学性质
  • 批准号:
    Y24A010033
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
量子可积系统的代数结构
  • 批准号:
    24ZR1468600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
量子群和Schur代数的表示理论
  • 批准号:
    12371032
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
i-量子群的实现与表示
  • 批准号:
    12371028
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于格的抗量子群签名和群加密方案研究
  • 批准号:
    62302376
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
与量子群紧密相关的一些范畴的表示理论
  • 批准号:
    12301038
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
代数表示论与非交换代数天元数学讲习班
  • 批准号:
    12226420
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
有限维拟量子群的结构和表示
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
i-量子广义代数及其Hall代数实现
  • 批准号:
    12271447
  • 批准年份:
    2022
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目

相似海外基金

箙から生じる組み合わせ論と量子群の表現論
源自量子群的颤动和表示论的组合学
  • 批准号:
    23KJ0337
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
作用素環論的なテンソル圏と量子群の研究
基于算子代数理论的张量范畴和量子群研究
  • 批准号:
    23KJ0695
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
場の量子論に現れる代数構造と量子群の表現論
量子场论和量子群表示论中出现的代数结构
  • 批准号:
    21J14653
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
半無限旗多様体の同変 K-群とアフィン量子群のレベル・ゼロ表現の研究
半无限旗流形等变K群和仿射量子群的零级表示研究
  • 批准号:
    21K03198
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
超対称艤装配位とアフィン超量子群のクリスタル
超对称舾装结构和仿射超量子群晶体
  • 批准号:
    21F21028
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
超対称艤装配位とアフィン超量子群のクリスタル
超对称舾装结构和仿射超量子群晶体
  • 批准号:
    21F31028
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Research of quantum group actions on operator algebras
算子代数上的量子群作用研究
  • 批准号:
    21K03280
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
アフィン量子群のレベル・ゼロ表現論と幾何学的佐武対応
仿射量子群的零级表示论与几何Satake对应
  • 批准号:
    20K14278
  • 财政年份:
    2020
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Non-Commutative Spaces, Their Symmetries, and Geometric Quantum Group Theory
非交换空间、它们的对称性和几何量子群论
  • 批准号:
    2001128
  • 财政年份:
    2020
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Standard Grant
巨大な量子群上の調和解析と分岐グラフ上の確率論の融合的研究
大量子群调和分析与分岔图概率论的融合研究
  • 批准号:
    19J21098
  • 财政年份:
    2019
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了