非可換解析を基礎とする非可換微分幾何学の構築と超弦理論への展開

基于非交换分析的非交换微分几何构造及其在弦论中的应用

基本信息

  • 批准号:
    15654027
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

本研究を主導する研究代表者は、収束する変形量子化の構成から新しい幾何学的概念を展開した。特に、ジャーブ理論との深い関係が解明され、これを詳しく調べた。第二には、Lie環を基本とする1次ポアソン構造、2次ポアソン構造に対する変形量子化を応用できるような具体的体系を整え、その応用へ発展させている。保形形式で注目されているCohen-Rankin積は、不変量子化として考えられているが、この研究を研究分担者である宮崎(琢)の協力を求めて解明をはじめている。森吉は、トポロジーの立場から非可換多様体の不変量の構成、特に指数定理の研究を行なう。特に、非可換トーラス上のDirac作用素による指数定理の構成をめざし、佐々木多様体の指数定理を得ている。亀谷は4次元多様体の不変量として研究が進んでいるザイバーグ・ウィッテン不変量の研究、特に11/8予想についての研究を行って、成果を挙げている。これらの研究の展開のために、国外外研究者との討議等を行ない、海外研究者と研究交流のために、直接海外に赴き、以下の研究者と共同研究や研究討論を行ってきた。Alan Weinstein : University of California Berkley, Prof., Poisson GeometryAlbert Cattaneo : ETH, Zurich, Prof., Theoretical physicsAlain Connes : IHES, Paris, Prof., Noncommutative geometryその成果をまとめるために、A.WeinsteinとA.Cattaneoが来年来日する。
The lead researcher in this study developed the concept of quantum geometry in the form of a bundle. The theory and the deep relationship between them are explained in detail. Second, Lie ring basic structure, second order structure, shape quantization, specific system, all kinds of applications, development. Cohen-Rankin product, non-quantization, research, collaborators, solutions, solutions Moriyoshi's research on the construction of invariant quantities of non-commutative multibodies and special exponent theorem is carried out. The construction of the exponent theorem for the Dirac action on the special, noncommutative matrix is discussed. The research on the 4-dimensional multi-body has been carried out continuously and the results have been continuously improved. Research and development, discussion by foreign researchers, overseas researchers, research exchanges, direct overseas visits, joint research by the following researchers, and research discussions. Alan Weinstein : University of California Berkley, Prof., Poisson GeometryAlbert Cattaneo : ETH, Zurich, Prof., Theoretical physicsAlain Connes : IHES, Paris, Prof., A.Weinstein A.Cattaneo

项目成果

期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Saito-Kurokawa lifting to cohomological Siegel modular forms.
关于 Saito-Kurokawa 提升到上同调 Siegel 模形式。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    鈴木佳苗;佐渡真紀子;坂元章;T.Yoshida;H.Seno;T.Miyazaki
  • 通讯作者:
    T.Miyazaki
Star exponential functions as two-values elements
作为二值元素的星指数函数
多様体入門
流形简介
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Maeda;H.Omori;T.Miyzaki;前田 吉昭
  • 通讯作者:
    前田 吉昭
P.Bieliavsky, P.Bonue, Y.Maeda: "Universal deformation formulae, Symplectic Lie groups and symmetric spaces"Lecture Note in Physics, Springer. (to appear).
P.Bieliavsky、P.Bonue、Y.Maeda:“通用变形公式、辛李群和对称空间”物理学讲义,施普林格。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
前田 吉昭: "Deformation quantization and noncommutative differential geometry"Sugaku Expositions. 16. 1-23 (2003)
前田义明:“变形量子化和非交换微分几何”Sugaku Expositions。16. 1-23 (2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

前田 吉昭其他文献

Finiteness of Ford and Dirichlet domains for 3-dimensional cone hyperbolic manifolds
3 维锥双曲流形的 Ford 域和 Dirichlet 域的有限性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    前田 吉昭;佐古 彰史;秋吉宏尚
  • 通讯作者:
    秋吉宏尚
3次元錐双曲多様体のフォード領域とディリクレ領域に関する実験
三维圆锥双曲流形的Ford和Dirichlet区域实验
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    前田 吉昭;佐古 彰史;秋吉宏尚;秋吉宏尚
  • 通讯作者:
    秋吉宏尚
非可換微分幾何学の基礎
非交换微分几何基础
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    前田 吉昭;佐古 彰史
  • 通讯作者:
    佐古 彰史

前田 吉昭的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('前田 吉昭', 18)}}的其他基金

T-双対性と一般化された幾何学
T-对偶性和广义几何
  • 批准号:
    09F09748
  • 财政年份:
    2009
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
行列値作用素に対する多重スケール解析の展開:数理物理と量子力学のモデルへの応用
矩阵值算子多尺度分析的发展:在数学物理和量子力学模型中的应用
  • 批准号:
    07F07728
  • 财政年份:
    2007
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
変形量子化とジャーブ理論
变形量化和振动理论
  • 批准号:
    18654036
  • 财政年份:
    2006
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
コーク大学を拠点とした幾何学に関する国際連携研究教育推進準備企画
科克大学促进几何学国际合作研究和教育筹备项目
  • 批准号:
    18634003
  • 财政年份:
    2006
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Poisson幾何学国際会議2006年開催のための準備および調査企画
2006年泊松国际几何会议筹备及研究规划
  • 批准号:
    17634003
  • 财政年份:
    2005
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非可換幾何学に関連した数理物理に関する日英共同プロジェクトの立案企画
与非交换几何相关的数学物理的日英联合项目的策划和规划
  • 批准号:
    14604004
  • 财政年份:
    2002
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ハーミット及び解析ベクトル束空間における収束及びコンパクト性
Hermit 和解析向量丛空间中的收敛性和紧性
  • 批准号:
    98F00525
  • 财政年份:
    2000
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
多様体上の微分作用素のなす空間の幾何学、コスティックスの特異点理論およびストルム理論
流形上微分算子形成的空间几何、Kostics的奇点理论和Strumm的理论
  • 批准号:
    00F00270
  • 财政年份:
    2000
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非可換微分幾何学の構築
非交换微分几何的构造
  • 批准号:
    09874024
  • 财政年份:
    1997
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
無限次元と非可換な幾何学について
关于无限维和非交换几何
  • 批准号:
    06640167
  • 财政年份:
    1994
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

変形量子化の変換則と不変量およびその応用
变形量化的变换规则和不变量及其应用
  • 批准号:
    22K03321
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
変形量子化と非可換指数関数の研究及びその応用
变形量化与非交换指数函数及其应用研究
  • 批准号:
    18K03286
  • 财政年份:
    2018
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
変形量子化とジャーブ理論
变形量化和振动理论
  • 批准号:
    18654036
  • 财政年份:
    2006
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
振動型積分変換からなる無限次元リー群,変形量子化及び非可換幾何学
由振荡积分变换、形变量化和非交换几何组成的无限维李群
  • 批准号:
    98J06167
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
位相的量子効果の変形量子化による解析
使用变形量子分析拓扑量子效应
  • 批准号:
    98J09235
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了