非線形楕円型方程式に対するPohozaevの恒等式とその応用

Pohozaev恒等式及其在非线性椭圆方程中的应用

基本信息

  • 批准号:
    07640176
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 无数据
  • 项目状态:
    已结题

项目摘要

本年度、以下のような研究実績をあげた。1.松隈型と呼ばれる非線形楕円型方程式に対し、その正値球対称解を3種類に分類し、各解をPohozaev恒等式の符号によって特徴付けた。この特徴付けを用いて、各種の解が存在するための十分条件を与えることができた。2.遠方で速く減衰する解が一意的に存在するための必要十分条件が、Pohozaevの恒等式が常に正となることを明らかにした。3.非線形項がパラメータを含むとき、遠方で速く減衰する解がパラメータの変動とともに度のように振る舞うか、特に途中で消滅したり爆発したりするパラメータ値の条件を明らかにした。4.ある種の非線形放物型偏微分方程式の球対称な自己相似解に対し、ある種の変数変換によって松隈型の方程式に帰着できることを示し、上の結果を応用することによって遠方で速く減衰する自己相似解の一意性を証明するとともに、放物型偏微分方程式の爆発問題に対する臨界指数の決定に成功した。5.自己相似解と関連する非線形楕円型方程式に対し、自明解からの分岐の問題について詳細に解析し、その分岐点を決定するとともに、分岐点近傍での解の構造について調べた。
This year, we will conduct a study on this year. 1. The Matsukuma type equation is different from the normal type equation, the correct ball is called to solve the classification of class 3, and the symbols of the Pohozaev identities of each solution are special. Special payment is made for the use of information, and for all kinds of information, there are special conditions and conditions for each kind of information. two。 The square speed, the decline, the solution, the existence, the necessary ten-point condition, the Pohozaev identity, the identity. 3. The non-linear information system includes the information, the speed, the 4. The partial differential equation of the non-linear release type is known as the self-similar solution of the equation, the number of the equation of the equation of the Matsukuma type, the equation of the equation, and the results of the previous results, the results show that they are similar to each other, and the results show that they are similar to each other. The partial differential equation of the release type determines the success of the problem. 5. It is similar to solve the non-linear equation, the self-explanatory solution of the bifurcation problem, the analysis of the bifurcation point, the decision of the bifurcation point, and the solution of the bifurcation point.

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.EI and E.YANAGIDA: "Instability of Stationary Solutions for Equations of Curvature-Driven Motion of Curves" Journal of Dynamics and Differential Equations. 7. 423-435 (1995)
S.EI 和 E.YANAGIDA:“曲率驱动曲线运动方程的平稳解的不稳定性”动力学与微分方程杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. MARUYAMA and W. TAKAHASHI: "Nonlinear and Convex Analysis in Economic Theory" Springer, 306 (1995)
T. MARUYAMA 和 W. TAKAHASHI:“经济理论中的非线性和凸分析” Springer,306 (1995)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.MAKINO and S.UKAI: "Local smooth solutions of the relativistic Euler equation" J.Math. Kyoto Univ.35. 105-114 (1995)
T.MAKINO 和 S.UKAI:“相对论欧拉方程的局部平滑解”J.Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.KOJIMA: "Immersed geodesic surfaces in hyperbolic 3-manifolds" Complex Variables. (to appear).
S.KOJIMA:“双曲 3 流形中的浸没测地线表面”复变量。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.T.LAU and W.TAKAHASHI: "Invariant Means and Fixed Point Properties for Non-expansive Representations of Topological Semigroups" Topological Methods in Nonlinear Analysis. 5-1. 39-57 (1995)
A.T.LAU 和 W.TAKAHASHI:“拓扑半群非扩张表示的不变均值和不动点性质”非线性分析中的拓扑方法。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

柳田 英二其他文献

極低温ミリ波観測システムで探るビッグバン以前の宇宙
使用低温毫米波观测系统探索大爆炸之前的宇宙
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    金橋魁利;竹腰直哉;Yong-Young Noh;太田裕道;田中久暁;竹延大志;柳田 英二;Kumagai Takashi;小池祐太;関本裕太郎
  • 通讯作者:
    関本裕太郎
数学のとびら-解析入門
数学之门 - 分析导论
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sato Takafumi;Yamada Keiko;Kosaka Takao;Souma Seigo;Yamauchi Kunihiko;Sugawara Katsuaki;Oguchi Tamio;Takahashi Takashi;柳田 英二
  • 通讯作者:
    柳田 英二
Solvability of the heat equation with a dynamic singular potential
具有动态奇异势的热方程的可解性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    金橋魁利;竹腰直哉;Yong-Young Noh;太田裕道;田中久暁;竹延大志;柳田 英二
  • 通讯作者:
    柳田 英二

柳田 英二的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('柳田 英二', 18)}}的其他基金

放物型偏微分方程式における動的特異性の解析
抛物型偏微分方程的动态奇异性分析
  • 批准号:
    23K22402
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of dynamic singularities in parabolic partial differential equations
抛物型偏微分方程的动态奇点分析
  • 批准号:
    22H01131
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ネットワーク構造に対する非線形解析
网络结构的非线性分析
  • 批准号:
    16654032
  • 财政年份:
    2004
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
反応拡散系に関する数値的および解析的研究
反应扩散系统的数值和分析研究
  • 批准号:
    03F00152
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
反応拡散系に関する数値的および解析的研究
反应扩散系统的数值和分析研究
  • 批准号:
    03F03152
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
グラフ上の非線形拡散系のダイナミクス
图上非线性扩散系统的动力学
  • 批准号:
    13874014
  • 财政年份:
    2001
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Exploratory Research

相似海外基金

凝集系の視点による非線形楕円型偏微分方程式の解の解析
从聚集系统的角度分析非线性椭圆偏微分方程的解
  • 批准号:
    24K06794
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形楕円型偏微分方程式
非线性椭圆偏微分方程
  • 批准号:
    08640218
  • 财政年份:
    1996
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
関数方程式論:非線形楕円型偏微分方程式の球対称解の研究
函数方程理论:非线性椭圆偏微分方程球对称解的研究
  • 批准号:
    07740106
  • 财政年份:
    1995
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非線形楕円型偏微分方程式の解の存在とその挙動について
非线性椭圆偏微分方程解的存在性和行为
  • 批准号:
    07640231
  • 财政年份:
    1995
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非線形楕円型偏微分方程式に対する定性的理論
非线性椭圆偏微分方程的定性理论
  • 批准号:
    07740109
  • 财政年份:
    1995
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非線形楕円型偏微分方程式
非线性椭圆偏微分方程
  • 批准号:
    07640226
  • 财政年份:
    1995
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非線形楕円型偏微分方程式の定性的研究
非线性椭圆偏微分方程的定性研究
  • 批准号:
    06740122
  • 财政年份:
    1994
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非線形楕円型偏微分方程式の解の存在とその挙動について
非线性椭圆偏微分方程解的存在性和行为
  • 批准号:
    05640207
  • 财政年份:
    1993
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非線形楕円型偏微分方程式の解の研究
非线性椭圆偏微分方程解的研究
  • 批准号:
    04740096
  • 财政年份:
    1992
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非線形楕円型偏微分方程式
非线性椭圆偏微分方程
  • 批准号:
    04640173
  • 财政年份:
    1992
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了