部分因子環の分類とその応用

子因子环的分类及其应用

基本信息

  • 批准号:
    08211213
  • 负责人:
  • 金额:
    $ 0.38万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 无数据
  • 项目状态:
    已结题

项目摘要

A_<2n+1>型のJones subfactorのasymptotic inclusionのM_∞-M_∞ biomoduleにおいて,私とEvansが研究していたのと類似の不思議なorbifold現象が生じることをA.Ocneanuが見出した.このasymptotic inclusionの構成は,subfactor N⊂MにおけるM-M bimoduleから,M_∞-M_∞ bimoduleを作るもので,Drinfel′dのquantum double constructionのsubfactor理論における類似と見なせるものである.Evansと私は,このorbifold現象が一般的なものであり,また,我々が前からやっていた,同時不動点環としてのorbifoldと同一視できることを,A型のHecke環から生じるWenzlのsubfactorを調べることによって示した.すなわち,WZW model SU(3)_<3κ>に対応するsubfactorのasymptotic inclusionのM_∞-M_∞ bimoduleが,(Ocneanuの意味でのghostを伴った)orbifoldとして記述できることを証明した.Asymptotic inclusionの(dual)principal graphも実際に計算した.Ocneanuの言うorbifoldを,我々がもとから研究しているorbifoldと同一視したことの系として,D_<2n>型(n>2)のDynkin図形の偶頂点のなすbimoduleたちに非退化なbraidingが入ることが示される.これは,OcneanuやTuraev-Wenzlによって,まったく違う方法で近年導入されたbraidingと同じ物を与えていることと期待される.これらの研究はOcneanuのparagroup理論に基づいている.我々はこの理論とそれに関連する理論について,本の原稿も書いた.この理論は多くの基礎的な部分が未出版となっていたもので,今回初めてself-containedな形でまとめられた.
In addition, there are some problems in the study of the disease, such as the Evans, the orbifold, the Jones subfactor, the orbifold, the A.Ocneanu, the A.Ocneanu. For example, subfactor

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Kawahigashi: "Classification of approximatdy inner automorphism of subfactors" Mathematiscle Annalen. (印刷中).
Y. Kawahigashi:“子因子的近似内自同构的分类”Mathematiciscle Annalen(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

河東 泰之其他文献

線形代数問題集 第2版
线性代数习题集第二版
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐々木 良勝;鈴木 香織;竹縄 知之;河東 泰之
  • 通讯作者:
    河東 泰之
線形代数 第2版
线性代数第二版
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐々木 良勝;鈴木 香織;竹縄 知之;河東 泰之
  • 通讯作者:
    河東 泰之
Cohomology of actions of discrete groups on factors of type II[1] = II[1]型因子環上の群作用のコホモロジー
离散群对 II 型因子[1] 的作用上同调 = 群对 II 型因子环[1] 的作用上同调
  • DOI:
    10.11501/3087137
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    0
  • 作者:
    河東 泰之
  • 通讯作者:
    河東 泰之

河東 泰之的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('河東 泰之', 18)}}的其他基金

Analytical properties of standard subspaces and reflection positivity in AQFT
AQFT 中标准子空间的分析性质和反射正性
  • 批准号:
    22KF0082
  • 财政年份:
    2023
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Integral development of theory of operator algebras
算子代数理论的综合发展
  • 批准号:
    19H00640
  • 财政年份:
    2019
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
作用素環とミラーシンメトリー
算子代数和镜像对称
  • 批准号:
    19654029
  • 财政年份:
    2007
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
共形場理論の作用素理論的研究
共形场论算子理论研究
  • 批准号:
    06F06768
  • 财政年份:
    2006
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
作用素環とモンスター
干员戒指和怪物
  • 批准号:
    16654033
  • 财政年份:
    2004
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
作用素環におけるエントロピーの研究
算子代数中的熵研究
  • 批准号:
    04F04051
  • 财政年份:
    2004
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
自己準同型半群を用いた1次元共形ネットの分類理論
使用自同态半群的一维共形网络分类理论
  • 批准号:
    03F03768
  • 财政年份:
    2003
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
自己準同型半群を用いた1次元共形ネットの分類理論
使用自同态半群的一维共形网络分类理论
  • 批准号:
    03F00768
  • 财政年份:
    2003
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
作用素環論における剛性の研究
算子代数理论中的刚性研究
  • 批准号:
    15634009
  • 财政年份:
    2003
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
作用素環論における分類理論とその応用
分类理论及其在算子代数理论中的应用
  • 批准号:
    07640174
  • 财政年份:
    1995
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

作用素環・無限次元線形作用素と幾何学的トポロジー
算子代数、无限维线性算子和几何拓扑
  • 批准号:
    24K06704
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
作用素環を用いた群作用の研究
使用算子代数研究群行为
  • 批准号:
    24K06759
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
数体から構成される作用素環と付随する不変量の研究
由数域和相关不变量组成的算子代数的研究
  • 批准号:
    24K06780
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
力学系に関わる作用素環に対する双対性の研究
动力系统相关算子代数的对偶性研究
  • 批准号:
    24K16934
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
作用素環における条件付き期待値と分類戦略の応用
条件期望和分类策略在算子代数中的应用
  • 批准号:
    24K06762
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
作用素環と量子対称性の研究
算子环和量子对称性的研究
  • 批准号:
    23K20215
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
作用素環論と関数解析的群論の展開
算子代数理论和泛函解析群论的发展
  • 批准号:
    24K00527
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
極小力学系から生じる作用素環と位相充足群の多面的な研究
最小动力系统产生的算子代数和拓扑满足群的多方面研究
  • 批准号:
    23K22397
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
作用素環の分類と内部構造の解析
算子代数的分类及内部结构分析
  • 批准号:
    22KJ0771
  • 财政年份:
    2023
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
作用素環を用いたToeplitz作用素と合成作用素から作られる作用素の解析
使用算子代数分析由 Toeplitz 算子和复合算子构成的算子
  • 批准号:
    23K03142
  • 财政年份:
    2023
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了