自己準同型半群を用いた1次元共形ネットの分類理論

使用自同态半群的一维共形网络分类理论

基本信息

  • 批准号:
    03F03768
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

日本学術振興会外国人特別研究員の任期中,関連する二つの研究テーマについての成果をあげた.共形場理論に対する作用素環的アプローチでは円周上の作用素環のネットが基本的な研究対象である.Wiesbrockによって,この作用素環のネットは,half-sided modular inclusionと呼ばれる作用素環二つの組で記述されることがわかっている.このhalf-sided modular inclusionは冨田-竹崎理論によるモジュラー自己同型群から生じる自己準同型半群によって特徴付けられる.これは,E_0-半群の例になっているが,通常のE_0-半群の研究はB(H)上の自己準同型半群を考えるのに対し,今はIII_1型因子環上り自己準同型半群を考えているという違いがある.通常のB(H)上のE_0-半群の理論をIII_1型因子環上の自己準同型半群に適用する研究を行った.もともと作用素環のネットにおいては,Doplicher-Haag-Roberts自己準同型が重要なものであることが古くから知られているので,それをhalf-sided modular inclusionの枠組みに翻訳することが必要になり,これをまず実行した.また,B(H)上のE_0-半群についての研究成果は次の通りである.確率積分の方法によって,和系と呼ばれる自ら導入した対象から,Arversonの考えた積系を作る手法を確立した.これは,HudsonとParthasarathyの量子確率積分の理論をもっと一般的な状況に拡張したことになっている.次にL^2(0,∞)上の標準的流れの等距離写像半群のHilbert-Schmidt摂動を用いてCCR流の一般化を行った.これが上の意味での和系から生じていることも示された.このようにして生じるE_0半群がいつIII型になるかの判定条件も与えている.この条件を用いて実際に,3種の互いに異なるIII型E_0-半群を構成した.
During his tenure as Special Fellow for Foreigners of Japan Association for the Promotion of Science, he was associated with two research projects. Conformal field theory is a fundamental object of study for the generation of an action ring on the circumference of the action ring.Wiesbrock theory describes the generation of an action ring on the circumference of the action ring on the circumference of the action ring. This half-sided modular inclusion is the result of the Takesaki theory. In general, E_0-semigroups are studied by examining their own quasi-homomorphic semigroups over B(H), and by examining their own quasi-homomorphic semigroups over factor rings of type III_1. The theory of E_0-semigroups over B(H) and its application to quasi-homomorphic semigroups over factor rings of type III_1 are studied. In addition,Doplicher-Haag-Roberts has been found to be an important part of the process of forming a half-sided modular inclusion. E_0-semigroups on B(H). The method of determining the integral ratio is established by introducing the object into the system. Hudson Parthasarathy's theory of quantum accuracy integrals in general. The Hilbert-Schmidt motion of a standard flow over L^2(0,∞) is used to generalize CCR flows. The meaning of the above is that the harmony system is divided into two parts: one is the birth of the next, the other is the birth of the next. E_0 semigroup is a type III semigroup. Three kinds of E_0-semigroups of type III are constructed.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On product systems arising from sum systems
论由和系统产生的乘积系统
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

河東 泰之其他文献

線形代数問題集 第2版
线性代数习题集第二版
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐々木 良勝;鈴木 香織;竹縄 知之;河東 泰之
  • 通讯作者:
    河東 泰之
線形代数 第2版
线性代数第二版
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐々木 良勝;鈴木 香織;竹縄 知之;河東 泰之
  • 通讯作者:
    河東 泰之
Cohomology of actions of discrete groups on factors of type II[1] = II[1]型因子環上の群作用のコホモロジー
离散群对 II 型因子[1] 的作用上同调 = 群对 II 型因子环[1] 的作用上同调
  • DOI:
    10.11501/3087137
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    0
  • 作者:
    河東 泰之
  • 通讯作者:
    河東 泰之

河東 泰之的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('河東 泰之', 18)}}的其他基金

Analytical properties of standard subspaces and reflection positivity in AQFT
AQFT 中标准子空间的分析性质和反射正性
  • 批准号:
    22KF0082
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Integral development of theory of operator algebras
算子代数理论的综合发展
  • 批准号:
    19H00640
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
作用素環とミラーシンメトリー
算子代数和镜像对称
  • 批准号:
    19654029
  • 财政年份:
    2007
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
共形場理論の作用素理論的研究
共形场论算子理论研究
  • 批准号:
    06F06768
  • 财政年份:
    2006
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
作用素環とモンスター
干员戒指和怪物
  • 批准号:
    16654033
  • 财政年份:
    2004
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
作用素環におけるエントロピーの研究
算子代数中的熵研究
  • 批准号:
    04F04051
  • 财政年份:
    2004
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
自己準同型半群を用いた1次元共形ネットの分類理論
使用自同态半群的一维共形网络分类理论
  • 批准号:
    03F00768
  • 财政年份:
    2003
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
作用素環論における剛性の研究
算子代数理论中的刚性研究
  • 批准号:
    15634009
  • 财政年份:
    2003
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
部分因子環の分類とその応用
子因子环的分类及其应用
  • 批准号:
    08211213
  • 财政年份:
    1996
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
作用素環論における分類理論とその応用
分类理论及其在算子代数理论中的应用
  • 批准号:
    07640174
  • 财政年份:
    1995
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

作用素環・無限次元線形作用素と幾何学的トポロジー
算子代数、无限维线性算子和几何拓扑
  • 批准号:
    24K06704
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
作用素環を用いた群作用の研究
使用算子代数研究群行为
  • 批准号:
    24K06759
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
数体から構成される作用素環と付随する不変量の研究
由数域和相关不变量组成的算子代数的研究
  • 批准号:
    24K06780
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
作用素環における条件付き期待値と分類戦略の応用
条件期望和分类策略在算子代数中的应用
  • 批准号:
    24K06762
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
力学系に関わる作用素環に対する双対性の研究
动力系统相关算子代数的对偶性研究
  • 批准号:
    24K16934
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
作用素環と量子対称性の研究
算子环和量子对称性的研究
  • 批准号:
    23K20215
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
作用素環論と関数解析的群論の展開
算子代数理论和泛函解析群论的发展
  • 批准号:
    24K00527
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
極小力学系から生じる作用素環と位相充足群の多面的な研究
最小动力系统产生的算子代数和拓扑满足群的多方面研究
  • 批准号:
    23K22397
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
作用素環の分類と内部構造の解析
算子代数的分类及内部结构分析
  • 批准号:
    22KJ0771
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
作用素環を用いたToeplitz作用素と合成作用素から作られる作用素の解析
使用算子代数分析由 Toeplitz 算子和复合算子构成的算子
  • 批准号:
    23K03142
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了