代数群の表現論の代数解析学的研究

代数群表示论的代数分析研究

基本信息

  • 批准号:
    08640041
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 无数据
  • 项目状态:
    已结题

项目摘要

主として,筆者の定義したゲルファント超幾何方程式の拡張と,それに関連して生ずる表現論の問題について考察し,結果を得た.以前の研究で,この方程式がホロノミー系になるためのひとつの十分条件は得られていたが,これについて更にリー群論的立場からの考察を行い,巾零軌道との関係を明らかにした.また,解の積分表示の存在について更に研究を進めた.どのような場合に解の積分表示がある種のラドン変換で与えられるかを定め,その場合のラドン変換の一般的性質について考察した.柏原正樹との共同研究で扱ったラドン変換は,射影直線に関するものであったが,今回は半単純リー群のある種の一般型放物部分群に関するものを対象とした.特に,ラドン変換の像がどのような方程式を満たすかという問題をD加群論の立場から研究した.ラドン変換の像が常にある種の方程式系(ヴァーマ加群と関連して具体的に書ける)をみたすことは証明できた.予想は,ラドン変換がもとの関係空間をその方程式系を満たす関数の全体に1対1にうつすということだが,全射性は有る意味で(D加群論的定式化のもとで)一般に言えた.単射性は,現在のところ一般線形群の場合のみが言えている.なお,この結果は実リー群の場合の大島利雄・関口英子の結果の複素ヴァージョンである.ある種のコホモロジー群の消滅が言えば,我々の結果から大島・関口の結果は従うのであるが,それは今後の問題である.その他,我々の超幾何方程式を定義する際の前提になっている,ヴァーマ加群の最大真部分加群についての有る事実の量子群版についても研究を行った.これは,今後我々の方程式を差分化する際に必要になるであろう基本的結果である.
The main purpose of this paper is to define the equation of the system, and to discuss the problems in the table, and the results are satisfactory. In the past, in the study of the equation, the equation was used to study the situation in the past, and the equation was used in the previous study. in the previous study, the equation was used to study the situation in the previous study. in the previous study, the equation was used to study the situation in the past. The positive score of the solution means that there is an increase in the level of research. The positive meaning of the solution is that it means that you don't know what you're going to do, and that you don't know what to do. Baiyuan is in the process of joint research, projecting in a straight line, in a straight line, in a straight line. This time, it is necessary to make a joint study of the general type of objects in the group. In this connection, please add to the group discussion that there will be a lot of research in this field. You know, you don't know what's going on. If you want to know, the equation of space communication is very important. All the equations are in the range of 1: 1. There is a general meaning of total radiation (D plus the stereotype of the group theory). As for the nature of radiation, it is now that the general shape is similar to that of the general group. In the end, the results showed that there was no significant difference between the two groups. Please tell me that the group is going to talk about it, and we will talk about it. If you have a problem, you will have a problem in the future. Let's talk to him. We don't know how to define the equation. The premise is to add the most true part of the group to the group. In the future, we need to improve the basic results of the equation.

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M. Kashiwara: "Kazhdan-Lusztig conjecture for affine Lie algebras with negative level II." Duke Mathematical Journal. 84 (3). 771-813 (1996)
M. Kashiwara:“负 II 级仿射李代数的 Kazhdan-Lusztig 猜想。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Yoshioka: "Chamber structure of polarizations and the moduli of stable steaves on a ruled surface" Internat. Journal Math.7. 411-431 (1996)
K. Yoshioka:“极化的室结构和直纹表面上稳定板的模量”Internat。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Takeuchi: "Edge of the Wedge type Theorems for Hyperfunction Solutions" Duke Mathematical Journal. (1997)
K. Takeuchi:“超函数解的楔形边缘型定理”杜克数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Koshimizu: "On the Solvability of Partial Differential Equations" Proc. Japan Academy. 72 (6). 121-123 (1996)
H. Koshimizu:“论偏微分方程的可解性”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

谷崎 俊之其他文献

量子旗多様体上のD加群
量子标志流形上的 D 模块
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    安藤隆男;中村満紀男編;井上京子;Seiichi Kamada;Seiichi Kamada;Seiichi Kamada;Seiichi Kamada;Seiichi Kamada;Seiichi Kamada;Seiichi Kamada;Seiichi Kamada;Seiichi Kamada;鎌田聖一;Seiichi Kamada;Seiichi Kamada;Seiichi Kamada;M.Kaneda;T.Tanisaki;D.Nakano;Y.Hashimoto;T.Tanisaki;D.Nakano;T.Tanisaki;谷崎 俊之
  • 通讯作者:
    谷崎 俊之
リー代数と量子群の幾何学的表現論
李代数与量子群的几何表示论
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kashiwara;Masaki;柏原正樹;谷崎 俊之
  • 通讯作者:
    谷崎 俊之

谷崎 俊之的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('谷崎 俊之', 18)}}的其他基金

非可換代数多様体上のD加群とその表現論への応用
非交换代数簇的 D 模及其在表示论中的应用
  • 批准号:
    17654008
  • 财政年份:
    2005
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
リー代数と量子群の表現論の代数解析的研究
李代数和量子群表示论的代数分析研究
  • 批准号:
    12874005
  • 财政年份:
    2000
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
有限体およびP進体上のKZ方程式とその表現論への応用
有限域和P-adic域上的KZ方程及其在表示论中的应用
  • 批准号:
    10874005
  • 财政年份:
    1998
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
無限次元リー代数と量子群の表現論の代数解析的研究
无限维李代数的代数解析研究和量子群表示论
  • 批准号:
    07210260
  • 财政年份:
    1995
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
無限次元リー代数の代数解析学的研究
无限维李代数的代数分析研究
  • 批准号:
    07454007
  • 财政年份:
    1995
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
無限次元リー代数と量子群の表現の幾何学的研究
无限维李代数的几何研究和量子群的表示
  • 批准号:
    05230046
  • 财政年份:
    1993
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
代数群の表現論の代数解析学的研究
代数群表示论的代数分析研究
  • 批准号:
    05640044
  • 财政年份:
    1993
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
量子群の幾何学的研究
量子群的几何研究
  • 批准号:
    03854001
  • 财政年份:
    1991
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
半単純群および量子群の表現の代数解析的研究
半单群和量子群表示的代数分析研究
  • 批准号:
    02854005
  • 财政年份:
    1990
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
半単純群の表現とホッジ構造
半单群和 Hodge 结构的表示
  • 批准号:
    01740044
  • 财政年份:
    1989
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

整環の表現論の傾理論による深化
利用倾斜理论深化代数的表示理论
  • 批准号:
    23K22384
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
表現論と代数解析学
表示论和代数分析
  • 批准号:
    23K20206
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
量子対称対の表現論における新機軸:標準基底のセル構造によるアプローチ
量子对称对表示论的新创新:使用标准基元结构的方法
  • 批准号:
    24K16903
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
非可換調和解析におけるハーディ空間と新たな潮流-実解析・表現論・確率論の融合
Hardy空间和非交换调和分析的新趋势——实分析、表示论和概率论的融合
  • 批准号:
    24K06764
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
対称関数の代数的組合せ論とその表現論,組合せ論,可積分系への応用
对称函数的代数组合及其在表示论、组合学和可积系统中的应用
  • 批准号:
    24K06646
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
分岐則を主軸とした解析的表現論と大域解析
以分岔规则为中心的解析表示理论和全局分析
  • 批准号:
    23H00084
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
微分次数付き圏のカラビ・ヤウ構造と多元環の表現論
微分阶范畴的Calabi-Yau结构与代数表示论
  • 批准号:
    22KJ0737
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
次数付きリー代数の表現論に基づく可積分系の研究
基于有序李代数表示论的可积系统研究
  • 批准号:
    23K03217
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
表現論および可積分系とMacdonald-Koornwinder多項式
表示论、可积系统和 Macdonald-Koornwinder 多项式
  • 批准号:
    22KJ1550
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
log頂点作用素代数の幾何学的表現論とその応用に関する研究
对数顶点算子代数几何表示理论及其应用研究
  • 批准号:
    22KJ2415
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了