不連結簡約群に対するSpringer対応と指標層

Springer 对未连接的缩减组和指示层的支持

基本信息

  • 批准号:
    02F00792
  • 负责人:
  • 金额:
    $ 0.77万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 无数据
  • 项目状态:
    已结题

项目摘要

当初の研究計画は,不連結簡約代数群のSpringer対応と指標層の研究であった.このテーマに関しては,次ページに記載した結果が得られ,その拡張をめざして研究を進め,ある程度のめどがたった.しかし,この分野で,既に先行する研究があることが分り,我々のねらいとしていた結果は,そこに含まれることが分った.そこで,後半は少しテーマを変えて,有限体上の対称空間の理論,特に簡約群,Gに対し,G(〓_<q^2>)/G(〓_q)について調べた.Gの中心が連結な場合,一般的な結果が知られていたが,Gの中心が不連結な場合は,まだ知られていなかった.我々は,そのようなGの典型的な例であるSL_nの場合にG(〓_<q^2>)/G(〓_q)の置換表現に表われる.G(〓_<q^2>)の既約指標の重複度を決定することが出来た.この結果は,Shintani descentの理論,更にはG(〓_<q^n>)/G(〓_q)への拡張など興味深い問題に発展する可能性を持っている.
The original research plan is to study the Springer pairs and index layers of unlinked reduced algebraic groups. The results of this study are as follows: The first step is to study the problem and the second step is to study the problem. The theory of symmetric spaces on finite bodies, especially the parsimony group,G, G(q_q),G(q_q_q),G(q_q),G(q_q_q), G (q_q_q A typical example of G is the permutation behavior of G(G_<q^2>)/G(G_q). The repeatability of G(G_<q^2>) is determined. These results are contrary to Shintani descent theory, and furthermore to the possibility of developing G(_<q^n>)/G(_q).

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

庄司 俊明其他文献

小・中学校の「いのちの教育」に関する全国実態調査(第二報)
全国中小学“生命教育”调查(第二次报告)
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Sawada;T.Shoji;T.Shoji;庄司 俊明;Toshiaki Shoji;Toshiaki Shoji;近藤 卓;近藤 卓;近藤 卓;近藤 卓;近藤 卓;近藤 卓
  • 通讯作者:
    近藤 卓
Symmetric space associated to finite special linear groups
与有限特殊线性群相关的对称空间
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Sawada;T.Shoji;T.Shoji;庄司 俊明;Toshiaki Shoji
  • 通讯作者:
    Toshiaki Shoji
お父さんは子どもを守れるか
父亲能保护自己的孩子吗?
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Sawada;T.Shoji;T.Shoji;庄司 俊明;Toshiaki Shoji;Toshiaki Shoji;近藤 卓;近藤 卓;近藤 卓;近藤 卓;近藤 卓;近藤 卓;近藤 卓編著;近藤 卓
  • 通讯作者:
    近藤 卓
「いのち」のイメージに関する調査(第一報)-いのちの教育の実践のために-
“生命”形象调查(第一份报告)——为了生命教育的实践——
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Sawada;T.Shoji;T.Shoji;庄司 俊明;Toshiaki Shoji;Toshiaki Shoji;近藤 卓;近藤 卓;近藤 卓;近藤 卓;近藤 卓
  • 通讯作者:
    近藤 卓
Equivariant Chow groups and Chern classes
等变 Chow 群和 Chern 类
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Sawada;T.Shoji;T. Ohmoto;T.Shoji;T. Shoji;G. Ishikawa;T. Shoji;G. Ishikawa;庄司 俊明;T. Ohmoto
  • 通讯作者:
    T. Ohmoto

庄司 俊明的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('庄司 俊明', 18)}}的其他基金

指標層の理論とその拡張
指数层理论及其扩展
  • 批准号:
    25400012
  • 财政年份:
    2013
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
有限体上の対称空間と新谷descent
有限域上的对称空间和 Shintani 下降
  • 批准号:
    20654002
  • 财政年份:
    2008
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
有隈体上の対称空間と新谷descent
Arukuma 体和 Shintani 血统上的对称空间
  • 批准号:
    17654005
  • 财政年份:
    2005
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
Braner代数とBirman-Murakami-Wenzl代数のモジュラー表現論
Braner代数和Birman-Murakami-Wenzl代数的模表示论
  • 批准号:
    03F02729
  • 财政年份:
    2004
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Brauer代数とBirman-Murakami-Wentzl代数のモジュラー表現論
Brauer 代数和 Birman-Murakami-Wentzl 代数的模表示论
  • 批准号:
    02F00729
  • 财政年份:
    2003
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
半単純代数群の半単純元から得られるポアンカレ単項式と表現
庞加莱单项式和从半单代数群的半单元素获得的表达式
  • 批准号:
    01F00718
  • 财政年份:
    2001
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
複素鏡映群の研究
复杂反射群的研究
  • 批准号:
    99F00013
  • 财政年份:
    1999
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
有限代数群の表現論
有限代数群的表示论
  • 批准号:
    08640064
  • 财政年份:
    1996
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
有限代数群の表現論
有限代数群的表示论
  • 批准号:
    07640071
  • 财政年份:
    1995
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
有限代数群の表現論
有限代数群的表示论
  • 批准号:
    06640081
  • 财政年份:
    1994
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

志村多様体および局所対称空間のコホモロジー
Shimura 流形和局部对称空间的上同调
  • 批准号:
    24K16895
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
対称空間の幾何学の深化と応用および離散化
对称空间几何与离散化的深化与应用
  • 批准号:
    23K22395
  • 财政年份:
    2024
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
全測地的部分多様体を用いた例外型対称空間の極大対蹠集合の分類・構成
使用总测地线子流形对异常对称空间的最大对映集进行分类和构造
  • 批准号:
    23K12980
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
対称空間・多変数超幾何関数・パンルベ関数の理論に依拠したランダム行列理論の展開
基于对称空间、多元超几何函数和 Painlevé 函数理论的随机矩阵理论的发展
  • 批准号:
    23K03227
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
カンドルと対称空間の観点からの結び目の不変量の研究
坦诚空间和对称空间视角下的结不变量研究
  • 批准号:
    22KJ2084
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
対称空間の対蹠集合の応用と関連する幾何学の研究
对映集在对称空间中的应用及相关几何研究
  • 批准号:
    23K03100
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
対称空間上の解析学
对称空间分析
  • 批准号:
    23KJ2118
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
対称空間の幾何学の深化と応用および離散化
对称空间几何与离散化的深化与应用
  • 批准号:
    22H01124
  • 财政年份:
    2022
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
対称空間の観点からの Damek-Ricci 空間の一般化とその幾何構造の研究
对称空间视角下Damek-Ricci空间的推广及其几何结构研究
  • 批准号:
    22K13919
  • 财政年份:
    2022
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
対称空間の一般化およびその極地と対蹠集合の幾何学的研究
对称空间的推广及其极集和对映集的几何研究
  • 批准号:
    21K03250
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了