3次元商特異点と層のモジュライの研究
3D商奇点和层模的研究
基本信息
- 批准号:04F04044
- 负责人:
- 金额:$ 0.58万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
研究分担者Logvinenkoはcrepantな特異点解消がどのようなG星座族をパラメータ付けるかを調べ,又,そのG星座族を核とするFourier-Mukai変換が導来McKay対応を与えるかどうかを研究した.Bondal-Orlovの仕事やBridgeland-King-Reid達の論文(math.AG/9908027)を調べ次を証明することができた.「概型Yが商特異点への自然な射が双有理になるような直交族をパラメータ付けているならば,Yはcrepantな特異点解消であり,又,その上の連接層の導来圏D(Y)はC^n上のG連接層の導来圏と圏同値である.」すなわち,G星座の族が導来McKay対応を与えるには直交性がみたされれば十分である.Logvinenkoはこれを射影的でないcrepantな特異点解消に適用し,非射影的な導来McKay対応の最初の例を得た.副産物として可換代数上の交点理論の局所Noether概型上の有界複体への新しい応用を見つけ,安定G星座族の普遍族を全ての安定性パラメータに対して具体的に計算する方法を示した.これらの結果は2006年7月の数理解析研究所プレプリントNo.1554 "Derived McKay correspondence via pure-sheaf transforms" (math.AG/0606791)にまとめられた.5月には韓国ソウルで開催された国際会議"Derived categories of coherent sheaves"に参加し,この研究成果を発表した.又,7月には広島大学の石井亮助教授を尋ね研究連絡を行った.上の仕事の後は川又教授の論文"Log crepant birational maps and derived categories"を読むために代数的スタックを勉強し,ここに現れる導来McKay対応がG星座族から来ているかどうかを調べた.
The research contributor Logvinenko
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometric realization of T-shaped root systems and counterexamples to Hilbert's fourteenth problem, Algebraic Transformation Groups and Algebraic Varieties
T形根系的几何实现以及希尔伯特第十四个问题“代数变换群和代数簇”的反例
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Mukai;Shigeru
- 通讯作者:Shigeru
Plane quartics and Fano threefolds of genus twelve
十二属的平面四次和法诺三重
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Mukai;Shigeru
- 通讯作者:Shigeru
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
向井 茂其他文献
Invitation to Galois Theory
伽罗瓦理论邀请函
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
長南浩人;齋藤佐和;向井 茂;H.Umemura;H.Umemura;S.Mukai;H.Kanno;H.Umemura;H.Umemura - 通讯作者:
H.Umemura
Polarlzed K3 surface of gemus thinteen
Gemus Thinteen 偏光 K3 表面
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
長南浩人;齋藤佐和;向井 茂;H.Umemura;H.Umemura;S.Mukai - 通讯作者:
S.Mukai
モジュライ入門-数え上げとコンパクト化をめぐって
模数简介 - 关于枚举和紧缩
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
T. Akita;T. Akita;T. Suwa;T. Suwa;T. Akita;T. Akita;T. Ohmoto;T. Suwa;T. Ohmoto;T. Suwa;G. Ishikawa;G. Ishikawa;G. Ishikawa;T. Ohmoto;大本亨;T. Ohmoto;S. Mukai and H. Nasu;Shigeru Mukai;向井 茂 - 通讯作者:
向井 茂
Polarized K3 surfaces of genus thirteen, Adv. Stud
十三属的偏振 K3 表面,Adv。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
T. Akita;T. Akita;T. Suwa;T. Suwa;T. Akita;T. Akita;T. Ohmoto;T. Suwa;T. Ohmoto;T. Suwa;G. Ishikawa;G. Ishikawa;G. Ishikawa;T. Ohmoto;大本亨;T. Ohmoto;S. Mukai and H. Nasu;Shigeru Mukai;向井 茂;Shigeru Mukai - 通讯作者:
Shigeru Mukai
向井 茂的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('向井 茂', 18)}}的其他基金
Birational geometry: subgroups of the Cremona groups and their generators
双有理几何:克雷莫纳群的子群及其生成元
- 批准号:
15F15751 - 财政年份:2015
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
ルート系を実現する代数多様体―ワイル群が支配する双有理幾何を目指して―
实现根系的代数簇:以Weyl群为主的双有理几何为目标
- 批准号:
20654004 - 财政年份:2008
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
低次超曲面の代数幾何と有限単純群
低阶超曲面和有限单群的代数几何
- 批准号:
15654006 - 财政年份:2003
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Exploratory Research
関数体上の2次形式とVerlinde公式
函数域上的二次形式和 Verlinde 公式
- 批准号:
12874002 - 财政年份:2001
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Exploratory Research
層のカテゴリーとモジュライの研究
层类别和模数的研究
- 批准号:
07640033 - 财政年份:1995
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
ベクトル束のモジュライ空間と可積分系
向量丛和可积系统的模空间
- 批准号:
05230027 - 财政年份:1993
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
モジュライ空間の構成とコンパクト化(多様体論への応用を目指して)
模空间的构造和紧致化(用于流形理论的应用)
- 批准号:
03640040 - 财政年份:1991
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
K3曲面の自己同型群の研究(モジュライ空間への応用と標数正の場合)
K3曲面自同构群的研究(在模空间中的应用及正特性的情况)
- 批准号:
60740025 - 财政年份:1985
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
K3曲面の自己同型群の研究
K3曲面自同构群的研究
- 批准号:
59740024 - 财政年份:1984
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
商特異点の非可換クレパント解消の研究
商奇点的非交换Creprant消解研究
- 批准号:
23K12956 - 财政年份:2023
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
高次元アーベル商特異点に対するクレパント特異点解消について
高维阿贝尔商奇点的crepant奇点解析
- 批准号:
10J05000 - 财政年份:2010
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
非可換群による商特異点のクレパントな特点解消とクイバーの表現のモジュライ空間
非交换群和箭袋表示模空间的商奇点的 Crepant 奇点解
- 批准号:
09F09768 - 财政年份:2009
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
グレブナー基底及び格子を用いた商特異点の特異点解消に関する研究
基于Gröbner基和格的商奇点奇异性消解研究
- 批准号:
09J06922 - 财政年份:2009
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
商特異点を持つ代数曲面と多項式環の不変部分環について
具有商奇点和多项式环的不变子环的代数曲面
- 批准号:
97J05048 - 财政年份:1998
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
有限鏡映群の商特異点(その微局所的構造と変形, 不変式環の一意的生成元)
有限反射群的商奇异性(其微局域结构和变形,不变环的独特生成器)
- 批准号:
X00210----374041 - 财政年份:1978
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)