FINER: Future thermal Imaging with Nanometre Enhanced Resolution

FINER:具有纳米增强分辨率的未来热成像

基本信息

  • 批准号:
    EP/V057626/1
  • 负责人:
  • 金额:
    $ 88.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The ever-increasing combined carbon footprint of information and communications technology (ICT) is unsustainable - more efficient devices must be developed. Thermal characterisation, which feeds into design optimisation, is one of the key steps for ensuring the efficiency and reliable operation of the new electronic devices being developed. However, accurately measuring the temperature of leading-edge electronic devices is becoming increasingly difficult or impossible because of their small size, and that is the challenge addressed in this proposal. Wide bandgap electronic devices including GaN have great proven potential for the next generation of sustainable ICT and power electronics, contributing to the needed carbon emissions reduction. Miniaturization is one of the routes to further increase the efficiency and performance of wide bandgap electronic devices, decreasing the active region size to <200 nm, similar to the technology pathway that silicon (Si) electronics has taken, using concepts such as the FinFET. Thermal management, which is the efficient extraction of waste heat from the active part of the device, is especially important for achieving efficient reliable nanoscale electronic devices; thermal resistance increases as they are "scaled" to nanometre dimensions because of a thermal conductivity reduction and heat confinement in 3-D device structures, e.g. in a fin shape. While self-heating can be mitigated reasonably easily for lower power density Si FinFETs, it is potentially a significant roadblock for "scaled" wide bandgap devices which operate at enormous power densities. However there is currently no thermal imaging technique with a sufficiently high spatial resolution (e.g. Raman thermography has a diffraction limited resolution of about 0.5 micrometer, >10x the hotspot size) to be able to accurately measure the hotspot temperature of these novel nanoscale wide bandgap electronic devices. Instead we currently rely on complex electrothermal models to estimate the temperature of nanoscale devices, with inherent uncertainties - measurement is needed.A step change is required, namely a sub diffraction limit (super resolution) thermal imaging technique, which is addressed by the Future thermal Imaging with Nanometre Enhanced Resolution (FINER) project. We will develop a transformative nano quantum dot based thermal imaging (nQTI) technique to deliver nanometre resolution thermal imaging for the first time. To demonstrate the newly developed technique our application focus is on scaled wide bandgap electronic devices supplied by our national and international partners, however this technique will be widely applicable. Quantum dots are ideal for this application: They can be deposited as a nm-thickness film on the surface of the device being tested, and the emission colour is temperature dependent, which is what we exploit for thermal imaging. Structured Illumination Microscopy (SIM) and Stimulated Emission Depletion (STED) super-resolution techniques which were originally developed for fluorescence microscopy, but are presently unsuitable for thermal imaging, will be exploited to achieve a resolution as small as 50nm for nQTI. nQTI will enable nano-scale electrothermal models to be developed and experimentally verified. Accurate models will further our understanding of nano-scale self-heating and heat diffusion, feeding back into improved device designs and novel thermal management solutions. This work will be done at the Centre for Device Thermography and Reliability (CDTR) which has an international reputation for being at the forefront of high spatial and temporal resolution thermal imaging, pioneering Raman thermography. This expertise makes the CDTR ideally placed to deliver this project successfully. The generous industrial support for this programme demonstrates that there is a great need for this and their belief in our ability to successfully deliver it.
信息和通信技术(信通技术)不断增加的综合碳足迹是不可持续的,必须开发更高效的设备。热特性分析是设计优化的关键步骤之一,可确保正在开发的新电子设备的效率和可靠运行。然而,精确测量尖端电子设备的温度变得越来越困难或不可能,因为它们的尺寸很小,这就是本提案所面临的挑战。包括GaN在内的宽带隙电子器件在下一代可持续ICT和电力电子领域具有巨大的潜力,有助于减少所需的碳排放。小型化是进一步提高宽带隙电子器件的效率和性能的途径之一,将有源区尺寸减小到<200 nm,类似于硅(Si)电子器件采用的技术途径,使用诸如FinFET的概念。热管理是从器件的有源部分有效提取废热,对于实现高效可靠的纳米级电子器件尤其重要;当它们被“缩放”到纳米尺寸时,热阻增加,这是因为热导率降低和3-D器件结构中的热限制,例如鳍状。虽然对于较低功率密度的Si FinFET,自加热可以相当容易地减轻,但对于在巨大功率密度下操作的“缩放”宽带隙器件,它可能是一个重大的障碍。然而,目前没有具有足够高的空间分辨率的热成像技术(例如,拉曼热成像具有约0.5微米的衍射极限分辨率,>热点尺寸的10倍),以能够精确地测量这些新颖的纳米级宽带隙电子器件的热点温度。相反,我们目前依赖于复杂的热成像模型来估计纳米级器件的温度,具有固有的不确定性-需要测量。需要一个步骤的变化,即亚衍射极限(超分辨率)热成像技术,这是由未来热成像与纳米增强分辨率(FINER)项目解决的。我们将开发一种变革性的基于纳米量子点的热成像(nQTI)技术,首次提供纳米分辨率的热成像。为了展示新开发的技术,我们的应用重点是由我们的国家和国际合作伙伴提供的缩放宽带隙电子器件,但这种技术将被广泛应用。量子点是该应用的理想选择:它们可以作为纳米厚度的薄膜沉积在被测设备的表面上,并且发射颜色取决于温度,这就是我们用于热成像的原因。结构照明显微镜(SIM)和受激发射耗尽(STED)超分辨率技术最初是为荧光显微镜开发的,但目前不适合热成像,将被利用来实现小至50 nm的分辨率nQTI。nQTI将使纳米尺度的微扰模型得以开发和实验验证。精确的模型将进一步加深我们对纳米级自加热和热扩散的理解,反馈到改进的器件设计和新型热管理解决方案中。这项工作将在设备热成像和可靠性中心(CDTR)进行,该中心因处于高空间和时间分辨率热成像的前沿而享有国际声誉,开创了拉曼热成像。这种专业知识使CDTR成为成功交付该项目的理想选择。工业界对这一计划的慷慨支持表明,这一计划非常有必要,而且他们相信我们有能力成功地实现这一计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Kuball其他文献

Non-Arrhenius Degradation of AlGaN/GaN HEMTs Grown on Bulk GaN Substrates
在块状 GaN 衬底上生长的 AlGaN/GaN HEMT 的非阿累尼乌斯退化
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    M. Ťapajna;N. Killat;J. Moereke;T. Paskova;K. Evans;J. Leach;X. Li;U. Ozgur;H. Morkoç;K. Chabak;A. Crespo;J. Gillespie;R. Fitch;M. Kossler;D. Walker;M. Trejo;G. Via;J. Blevins;Martin Kuball
  • 通讯作者:
    Martin Kuball
Siと接合したダイヤモンド基板上のFETの作製
在与 Si 结合的金刚石基底上制造 FET
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    神田 進司;山條 翔二;Martin Kuball;重川 直輝;梁 剣波
  • 通讯作者:
    梁 剣波
Control of Buffer-Induced Current Collapse in AlGaN/GaN HEMTs Using SiNx Deposition
使用 SiNx 沉积控制 AlGaN/GaN HEMT 中缓冲器引起的电流崩塌
  • DOI:
    10.1109/ted.2017.2738669
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    W. M. Waller;M. Gajda;S. Pandey;J. Donkers;D. Calton;J. Croon;J. Sonsky;M. Uren;Martin Kuball
  • 通讯作者:
    Martin Kuball
Elimination of Degenerate Epitaxy in the Growth of High Quality B 12 As 2 Single Crystalline Epitaxial Films
高质量B 12 As 2 单晶外延薄膜生长过程中简并外延的消除
  • DOI:
    10.1557/opl.2011.316
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Zhang;Hui Chen;M. Dudley;Yi Zhang;J. Edgar;Y. Gong;S. Bakalova;Martin Kuball;Lihua Zhang;D. Su;Yimei Zhu
  • 通讯作者:
    Yimei Zhu
Growth Mechanisms and Defect Structures of B12As2 Epilayers Grown on 4H-SiC Substrates
4H-SiC 衬底上生长的 B12As2 外延层的生长机制和缺陷结构
  • DOI:
    10.1016/j.jcrysgro.2011.12.065
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Yu Zhang;Hui Chen;M. Dudley;Yi Zhang;J. Edgar;Y. Gong;S. Bakalova;Martin Kuball;Lihua Zhang;D. Su;Yimei Zhu
  • 通讯作者:
    Yimei Zhu

Martin Kuball的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Kuball', 18)}}的其他基金

Transforming Net Zero with Ultrawide Bandgap Semiconductor Device Technology (REWIRE)
利用超宽带隙半导体器件技术 (REWIRE) 改造净零
  • 批准号:
    EP/Z531091/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Ultrawide Bandgap AlGaN Power Electronics - Transforming Solid-State Circuit Breakers (ULTRAlGaN)
超宽带隙 AlGaN 电力电子 - 改造固态断路器 (ULTRAlGaN)
  • 批准号:
    EP/X035360/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications
ECCS-EPSRC - 用于毫米波下一代无线通信的先进 III-N 器件和电路架构
  • 批准号:
    EP/X012123/1
  • 财政年份:
    2023
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
  • 批准号:
    EP/W034751/1
  • 财政年份:
    2023
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Van der Waals Ga2O3 functional materials epitaxy: Revolutionary power electronics
范德华 Ga2O3 功能材料外延:革命性的电力电子学
  • 批准号:
    EP/X015882/1
  • 财政年份:
    2023
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Materials and Devices for Next Generation Internet (MANGI)
下一代互联网材料和设备(MANGI)
  • 批准号:
    EP/R029393/1
  • 财政年份:
    2018
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Sub-micron 3-D Electric Field Mapping in GaN Electronic Devices
GaN 电子器件中的亚微米 3D 电场测绘
  • 批准号:
    EP/R022739/1
  • 财政年份:
    2018
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Integrated GaN-Diamond Microwave Electronics: From Materials, Transistors to MMICs
集成 GaN-金刚石微波电子器件:从材料、晶体管到 MMIC
  • 批准号:
    EP/P00945X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
Quantitative non-destructive nanoscale characterisation of advanced materials
先进材料的定量无损纳米级表征
  • 批准号:
    EP/P013562/1
  • 财政年份:
    2017
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant
High Performance Buffers for RF GaN Electronics
适用于 RF GaN 电子器件的高性能缓冲器
  • 批准号:
    EP/N031563/1
  • 财政年份:
    2016
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Research Grant

相似海外基金

Advancing understanding of interannual variability and extreme events in the thermal structure of large lakes under historical and future climate scenarios
增进对历史和未来气候情景下大型湖泊热结构的年际变化和极端事件的了解
  • 批准号:
    2319044
  • 财政年份:
    2024
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Standard Grant
Geographical distribution of thermal regime of high mountain Asian glaciers and its impact on future glacier fluctuation
亚洲高山冰川热力状况的地理分布及其对未来冰川波动的影响
  • 批准号:
    22H00033
  • 财政年份:
    2022
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
New method for preparation of nanoparticles of high entropy metal nitrides for future energy applications
用于未来能源应用的高熵金属氮化物纳米粒子的制备新方法
  • 批准号:
    22K04687
  • 财政年份:
    2022
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fast Electro-Thermal Finite Element Analysis (FEA) for the Thermal Management of High-Power Density electrical machines in hybrid electric future avia
用于未来混合电动高功率密度电机热管理的快速电热有限元分析 (FEA)
  • 批准号:
    2777136
  • 财政年份:
    2022
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Studentship
Understanding the physics and optimising Phase Change Material thermal energy storage systems for a sustainable future
了解物理原理并优化相变材料热能存储系统以实现可持续的未来
  • 批准号:
    2740870
  • 财政年份:
    2022
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Studentship
NESP MaC Project 1.28 - Future-proofing restoration & thermal physiology of kelp
NESP MaC 项目 1.28 - 面向未来的修复
  • 批准号:
    global : 77199302-f841-4d07-902b-b45c633276ab
  • 财政年份:
    2021
  • 资助金额:
    $ 88.06万
  • 项目类别:
NESP MaC Project 1.28 - Future-proofing restoration & thermal physiology of kelp
NESP MaC 项目 1.28 - 面向未来的修复
  • 批准号:
    global : 77199302-f841-4d07-902b-b45c633276ab
  • 财政年份:
    2021
  • 资助金额:
    $ 88.06万
  • 项目类别:
Thermal Stress Vulnerability and Resilience: Housing Stock Transformation fit for an Ageing Society in Future Climate
热应力脆弱性和恢复力:适应未来气候老龄化社会的住房存量转型
  • 批准号:
    ES/V011596/1
  • 财政年份:
    2020
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Fellowship
CAREER: Adding to the Future: Thermal Modeling, Sparse Sensing, and Integrated Controls for Precise and Reliable Powder Bed Fusion
职业:为未来添砖加瓦:热建模、稀疏传感和集成控制,实现精确可靠的粉床融合
  • 批准号:
    1953155
  • 财政年份:
    2019
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Standard Grant
CAREER: Adding to the Future: Thermal Modeling, Sparse Sensing, and Integrated Controls for Precise and Reliable Powder Bed Fusion
职业:为未来添砖加瓦:热建模、稀疏传感和集成控制,实现精确可靠的粉床融合
  • 批准号:
    1750027
  • 财政年份:
    2018
  • 资助金额:
    $ 88.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了