Integrated GaN-Diamond Microwave Electronics: From Materials, Transistors to MMICs
集成 GaN-金刚石微波电子器件:从材料、晶体管到 MMIC
基本信息
- 批准号:EP/P00945X/1
- 负责人:
- 金额:$ 551.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Global demand for high power microwave electronic devices that can deliver power densities well exceeding current technology is increasing. In particular Gallium Nitride (GaN) based high electron mobility transistors (HEMTs) are a key enabling technology for high-efficiency military and civilian microwave systems, and increasingly for power conditioning applications in the low carbon economy. This material and device system well exceeds the performance permitted by the existing Si LDMOS, GaAs PHEMT or HBT technologies. GaN-based HEMTs have reached RF power levels up to 40 W/mm, and at frequencies exceeding 300 GHz, i.e., a spectacular performance enabling disruptive changes for many system applications. However, transistor reliability is driven by electric field and channel temperature, so self-heating means in practice that reliable devices can only be operated up to RF power densities of 10 W/mm in contrast to the 40 W/mm hero data published in the literature. Considerable concern also exists in the UK and across Europe that access to state-of-the-art GaN microwave technology is limited by US ITAR (International Traffic in Arms Regulation) restrictions. The most advanced capabilities for all elements of GaN HEMT technology, using traditional SiC substrates, epitaxy and device processing currently reside in the US, with restricted access by UK industry.The vision of Integrated GaN-Diamond Microwave Electronics: From Materials, Transistors to MMICs (GaN-DaME) is to develop transformative GaN-on-Diamond HEMTs and MMICs, the technology step beyond GaN-on-SiC, which will revolutionize the thermal management which presently limits GaN electronics. Challenges occur in terms of how to integrate such dissimilar materials into a reliable device technology. The outcome will be devices with a >5x increase in RF power compared to GaN-on-SiC, or alternatively and equally valuably, a dramatic 'step-change' shrinkage in MMIC or PA size, and hence an increase in efficiency through the removal of lossy combining networks as well as a reduction in power amplifier (PA) cost. This represents a disruptive change in capability that will allow the realisation of new system architectures e.g. for RF seekers and medical applications, and enable the bandwidths needed to deliver 5G and beyond. Reduced requirements for cooling / increased reliability will result in major cost savings at the system level. To enable our vision to become reality, we will develop new diamond growth approaches that maximize diamond thermal conductivity close to the active GaN device area. In present GaN-on-Diamond devices a thin dielectric layer is required on the GaN surface to enable seeding and successful deposition of diamond onto the GaN. Unfortunately, most of the thermal barrier in these devices then exists at this GaN-dielectric-diamond interface, which has much poorer thermal conductivity than desired. Any reduction in this thermal resistance, either by removing the need for a dielectric seeding layer for diamond growth, or by optimizing the grain structure of the diamond near the seeding, would be of huge benefit. Novel diamond growth will be combined with innovative micro-fluidics using phase-change materials, a dramatically more powerful approach than conventional micro-fluidics, to further aid heat extraction. An undiscussed consequence of using diamond, its low dielectric constant, which poses challenges and opportunities for microwave design will be exploited. At the most basic level, the reliability of this technology is not known. For instance, at the materials level the diamond and GaN have very different coefficients of thermal expansion (CTE). Mechanically rigid interfaces will need to be developed including interdigitated GaN-diamond interfaces.
全球对高功率微波电子设备的需求,可以提供超过当前技术的功率密度的需求正在增加。特别是基于氮化岩(GAN)的高电子移动晶体管(HEMTS)是高效军事和平民微波系统的关键技术,并且越来越多地用于低碳经济中的电力调节应用。该材料和设备系统远远超过了现有的Si LDMO,GAAS PHEMT或HBT技术所允许的性能。基于GAN的HEMT已达到高达40 W/mm的RF功率水平,并且以超过300 GHz的频率,即出色的性能,为许多系统应用带来了破坏性变化。但是,晶体管的可靠性是由电场和通道温度驱动的,因此,自加热的意思是,与文献中发布的40 W/mm英雄数据相比,可靠的设备只能运行可靠的RF功率密度为10 W/mm。在英国和整个欧洲也存在相当大的关注,即获得最先进的gan微波技术受到美国ITAR(国际武器法规)限制的限制。 The most advanced capabilities for all elements of GaN HEMT technology, using traditional SiC substrates, epitaxy and device processing currently reside in the US, with restricted access by UK industry.The vision of Integrated GaN-Diamond Microwave Electronics: From Materials, Transistors to MMICs (GaN-DaME) is to develop transformative GaN-on-Diamond HEMTs and MMICs, the technology step beyond GaN-on-SiC, which will revolutionize the目前限制GAN电子的热管理。挑战在如何将这种不同的材料集成到可靠的设备技术中。结果将是与Gan-On-SIC相比,RF功率增加> 5倍的设备,或者同样有价值的设备,MMIC或PA大小的戏剧性“阶跃变化”收缩率显着,因此通过降低了损失的网络以及降低功率放大器(PA)的成本来提高效率。这代表了能力的破坏性变化,将允许实现新的系统体系结构,例如对于RF寻求者和医疗应用,并实现了交付5G及以后所需的带宽。降低冷却 /可靠性的需求减少将在系统级别节省大量成本。为了使我们的视野成为现实,我们将开发新的钻石生长方法,以最大程度地利用靠近活动gan设备区域的钻石导热性。在目前的Diamond设备中,需要在GAN表面上一个薄的介电层,以使钻石在GAN上成功沉积并成功沉积。不幸的是,这些设备中的大多数热屏障都存在于该gan-二甲梁界面,该界面的导热率差得多。通过消除对钻石生长的介电播种层的需求,或通过优化播种附近的钻石的晶粒结构的需要,这种耐热性的任何降低都将带来巨大好处。新颖的钻石生长将与创新的微流体使用相变材料相结合,这是一种比传统的微流体学更强大的方法,以进一步有助于萃取热量。使用钻石的一个毫无疑问的结果,它的低介电常数将被利用,从而构成微波设计的挑战和机会。在最基本的层面上,该技术的可靠性尚不清楚。例如,在材料水平上,钻石和GAN具有非常不同的热膨胀系数(CTE)。机械上的刚性接口将需要开发,包括互插的GAN-DIAMOND界面。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flow and heat transfer behaviour of nanofluids in microchannels
- DOI:10.1016/j.pnsc.2018.03.005
- 发表时间:2018-04-01
- 期刊:
- 影响因子:4.7
- 作者:Bowers, James;Cao, Hui;Ding, Yulong
- 通讯作者:Ding, Yulong
Simultaneous determination of the lattice thermal conductivity and grain/grain thermal resistance in polycrystalline diamond
- DOI:10.1016/j.actamat.2017.08.007
- 发表时间:2017-10-15
- 期刊:
- 影响因子:9.4
- 作者:Anaya, J.;Bai, T.;Kuball, M.
- 通讯作者:Kuball, M.
Design Considerations of a Dual Mode X-Band EPR Resonator for Rapid In-Situ Microwave Heating
用于快速原位微波加热的双模式 X 波段 EPR 谐振器的设计考虑
- DOI:10.1007/s00723-022-01463-1
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Barter M
- 通讯作者:Barter M
Additive GaN Solid Immersion Lenses for Enhanced Photon Extraction Efficiency from Diamond Color Centers
增材式 GaN 固体浸没透镜可提高钻石色心的光子提取效率
- DOI:10.17863/cam.100726
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Cheng X
- 通讯作者:Cheng X
Electropositive Nanodiamond-Coated Quartz Microfiber Membranes for Virus and Dye Filtration.
- DOI:10.1021/acsanm.1c00439
- 发表时间:2021-03-26
- 期刊:
- 影响因子:5.9
- 作者:Bland HA;Centeleghe IA;Mandal S;Thomas ELH;Maillard JY;Williams OA
- 通讯作者:Williams OA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Kuball其他文献
Novel thermal management of GaN electronics - Diamond substrates
GaN 电子器件的新颖热管理 - 金刚石衬底
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Martin Kuball;J. Pomeroy;J. Calvo;Huarui Sun;Roland B. Simon;D. Francis;F. Faili;D. Twitchen;S. Rossi;M. Alomari;E. Kohn;L. Tóth;B. Pécz - 通讯作者:
B. Pécz
Non-Arrhenius Degradation of AlGaN/GaN HEMTs Grown on Bulk GaN Substrates
在块状 GaN 衬底上生长的 AlGaN/GaN HEMT 的非阿累尼乌斯退化
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:4.9
- 作者:
M. Ťapajna;N. Killat;J. Moereke;T. Paskova;K. Evans;J. Leach;X. Li;U. Ozgur;H. Morkoç;K. Chabak;A. Crespo;J. Gillespie;R. Fitch;M. Kossler;D. Walker;M. Trejo;G. Via;J. Blevins;Martin Kuball - 通讯作者:
Martin Kuball
Elimination of Degenerate Epitaxy in the Growth of High Quality B 12 As 2 Single Crystalline Epitaxial Films
高质量B 12 As 2 单晶外延薄膜生长过程中简并外延的消除
- DOI:
10.1557/opl.2011.316 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yu Zhang;Hui Chen;M. Dudley;Yi Zhang;J. Edgar;Y. Gong;S. Bakalova;Martin Kuball;Lihua Zhang;D. Su;Yimei Zhu - 通讯作者:
Yimei Zhu
Growth Mechanisms and Defect Structures of B12As2 Epilayers Grown on 4H-SiC Substrates
4H-SiC 衬底上生长的 B12As2 外延层的生长机制和缺陷结构
- DOI:
10.1016/j.jcrysgro.2011.12.065 - 发表时间:
2011 - 期刊:
- 影响因子:1.8
- 作者:
Yu Zhang;Hui Chen;M. Dudley;Yi Zhang;J. Edgar;Y. Gong;S. Bakalova;Martin Kuball;Lihua Zhang;D. Su;Yimei Zhu - 通讯作者:
Yimei Zhu
Control of Buffer-Induced Current Collapse in AlGaN/GaN HEMTs Using SiNx Deposition
使用 SiNx 沉积控制 AlGaN/GaN HEMT 中缓冲器引起的电流崩塌
- DOI:
10.1109/ted.2017.2738669 - 发表时间:
2017 - 期刊:
- 影响因子:3.1
- 作者:
W. M. Waller;M. Gajda;S. Pandey;J. Donkers;D. Calton;J. Croon;J. Sonsky;M. Uren;Martin Kuball - 通讯作者:
Martin Kuball
Martin Kuball的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Kuball', 18)}}的其他基金
Transforming Net Zero with Ultrawide Bandgap Semiconductor Device Technology (REWIRE)
利用超宽带隙半导体器件技术 (REWIRE) 改造净零
- 批准号:
EP/Z531091/1 - 财政年份:2024
- 资助金额:
$ 551.14万 - 项目类别:
Research Grant
Ultrawide Bandgap AlGaN Power Electronics - Transforming Solid-State Circuit Breakers (ULTRAlGaN)
超宽带隙 AlGaN 电力电子 - 改造固态断路器 (ULTRAlGaN)
- 批准号:
EP/X035360/1 - 财政年份:2024
- 资助金额:
$ 551.14万 - 项目类别:
Research Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications
ECCS-EPSRC - 用于毫米波下一代无线通信的先进 III-N 器件和电路架构
- 批准号:
EP/X012123/1 - 财政年份:2023
- 资助金额:
$ 551.14万 - 项目类别:
Research Grant
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
- 批准号:
EP/W034751/1 - 财政年份:2023
- 资助金额:
$ 551.14万 - 项目类别:
Research Grant
Van der Waals Ga2O3 functional materials epitaxy: Revolutionary power electronics
范德华 Ga2O3 功能材料外延:革命性的电力电子学
- 批准号:
EP/X015882/1 - 财政年份:2023
- 资助金额:
$ 551.14万 - 项目类别:
Research Grant
FINER: Future thermal Imaging with Nanometre Enhanced Resolution
FINER:具有纳米增强分辨率的未来热成像
- 批准号:
EP/V057626/1 - 财政年份:2022
- 资助金额:
$ 551.14万 - 项目类别:
Research Grant
Materials and Devices for Next Generation Internet (MANGI)
下一代互联网材料和设备(MANGI)
- 批准号:
EP/R029393/1 - 财政年份:2018
- 资助金额:
$ 551.14万 - 项目类别:
Research Grant
Sub-micron 3-D Electric Field Mapping in GaN Electronic Devices
GaN 电子器件中的亚微米 3D 电场测绘
- 批准号:
EP/R022739/1 - 财政年份:2018
- 资助金额:
$ 551.14万 - 项目类别:
Research Grant
Quantitative non-destructive nanoscale characterisation of advanced materials
先进材料的定量无损纳米级表征
- 批准号:
EP/P013562/1 - 财政年份:2017
- 资助金额:
$ 551.14万 - 项目类别:
Research Grant
High Performance Buffers for RF GaN Electronics
适用于 RF GaN 电子器件的高性能缓冲器
- 批准号:
EP/N031563/1 - 财政年份:2016
- 资助金额:
$ 551.14万 - 项目类别:
Research Grant
相似国自然基金
GaN基电泵浦激光器结构微米线生长与器件研制
- 批准号:62374062
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
甘氨脱氧胆酸通过FXR-FABP6促进雄激素转化代谢而改善PCOS的分子机制研究
- 批准号:82371643
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于胆汁酸-FXR反馈环路探究草甘膦致肝脏脂代谢紊乱的机制
- 批准号:42307547
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丝氨酸蛋白酶PR3调控肾足细胞损伤介导糖尿病肾脏病的作用及苓桂术甘汤效应机制研究
- 批准号:82374171
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
GaN基WGM光学微腔的外延剥离及其垂直注入电泵浦激光器的研制和性能调控
- 批准号:12374072
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Heterojunction formation of conductive diamond and GaN, Ga2O3 for vertical device applications
用于垂直器件应用的导电金刚石和 GaN、Ga2O3 异质结形成
- 批准号:
20K04581 - 财政年份:2020
- 资助金额:
$ 551.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Room temperature GaN-diamond integration by surface activated bonding methods for high power GaN device
通过表面激活键合方法进行室温 GaN-金刚石集成,用于高功率 GaN 器件
- 批准号:
19K15298 - 财政年份:2019
- 资助金额:
$ 551.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Heteroepitaxial Growth of GaN on Diamond Substrates with High Thermal Conductivity
高导热金刚石衬底上异质外延生长 GaN
- 批准号:
414001775 - 财政年份:2018
- 资助金额:
$ 551.14万 - 项目类别:
Research Fellowships
Advanced characterization of GaN and GaN-on-diamond electronic devices
GaN 和金刚石基 GaN 电子器件的高级表征
- 批准号:
2123494 - 财政年份:2018
- 资助金额:
$ 551.14万 - 项目类别:
Studentship
Integrated Selective Growth of Diamond and GaN for Maximum Heat Extraction from Electronic Devices
金刚石和 GaN 的集成选择性生长可最大限度地从电子设备中提取热量
- 批准号:
1810419 - 财政年份:2018
- 资助金额:
$ 551.14万 - 项目类别:
Standard Grant