Development of a quadruped robot with continuum inflatable legs

连续充气腿四足机器人的研制

基本信息

  • 批准号:
    2598257
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

With the increasing dependence on automation in virtually all parts of industry, the need for intelligent machines that can safely navigate through different terrains and environments is now more pronounced than ever. At present, one of the major difficulties surrounding soft robotics is the lack of controlled mobility. Getting soft robots to walk in a controlled way in different environments without depending on rigid limbs is a difficult challenge to overcome and requires further research.Most walking robots such as Spot by Boston Dynamics are made from rigid material. Their success in being able to walk as well as they do is dependent on heavy computer resources which are responsible for controlling how they move. Even while being armed with such computer power, Spot is still quite limited in the variety of places it can walk in. For example, according to the user's manual: it is not able to walk in wet conditions or in any situation which requires it needs to climb or descend more than 30o inclines. To put this into perspective: this is far less than the maximum angle of 42o allowed by the British Building Regulations for domestic staircases.Nature, on the other hand, has had this problem solved for millions of years. Soft robots which have attempted to capture some of nature's wisdom in this regard have already shown to be useful in a variety of highly delicate situations including surgery, rehabilitation, underwater exploration and even disaster scenarios. This project will develop on work done previously with the ambition of making a robot that can walk on four inflatable legs, similar to, for example: an octopus' limbs. Analysing relevant literature and also shows that there is great support of the hypothesis that inflatable limbs similar to biological legs will be more capable of adapting to their environment without needing massive computational power. As of this writing, no such robot exists; which highlights the importance of the proposed research.AIMS/OBJECTIVESAims:1. To manufacture four soft legs that are made of inflatable material2. To build a soft (or rigid) frame that can hold all four legs, as well as the hardware needed to power and control the way the legs move3. To use pneumatic technology for controlling the pressure in the legs, and getting them to walk using changes in pressureObjectives:The first step is to create a single inflatable leg design will be informed by previous work in the literature. Once the this is made, it will be tested based on how well it can bend using air pressure. The next step will then be to make a frame (the robot's body) which will be able to hold four of these legs and control how they move based on increasing/decreasing air pressure. Finally, the robot's performance will be tested based on how well it can walk in different environments without relying on rigid limbs or massive amounts of computer power.METHODOLOGYThe main line of research will be based on designing a fully inflatable leg that can bend based on the amount of pressure inside. This will require knowledge to be drawn from a variety of different fields in the physical sciences. To successfully make the inflatable limb, new research will need to be conducted in the field of controlled air pressurization technology so that the robot does not depend on an external air compressor. This will all need to be based on a robust network of sensors. The application of such sensors to the proposed robot will also require new research in order to be successfully implemented.EPSRC ALIGNMENTThis is a broad subject and is expected to align with the following EPSRC themes, according to https://epsrc.ukri.org/research/ourportfolio/researchareas/:Artificial intelligence technologiesControl engineeringElectrical motors and drives/electromagneticsEngineering designImage and vision computingRoboticsSensors and instrumentationSoftware engineeringSynthetic biology
随着工业几乎所有领域对自动化的依赖程度越来越高,现在对能够安全地在不同地形和环境中导航的智能机器的需求比以往任何时候都更加明显。目前,围绕软机器人的主要困难之一是缺乏可控的移动性。让软机器人在不依赖刚性肢体的情况下在不同的环境中以可控的方式行走是一个难以克服的挑战,需要进一步的研究。大多数行走机器人,如波士顿动力公司的Spot,都是由刚性材料制成的。它们能够像它们那样行走的成功依赖于负责控制它们移动方式的沉重的计算机资源。即使装备了这样的计算机能力,Spot在它可以行走的地方的种类仍然相当有限。例如,根据用户手册:它不能在潮湿的条件下行走,或者在任何需要爬下超过30度坡度的情况下都不能行走。客观地说,这远远低于英国建筑法规所允许的家用楼梯的最大倾角42度。另一方面,大自然已经解决这个问题数百万年了。软机器人试图在这方面获取一些大自然的智慧,已经被证明在各种高度微妙的情况下是有用的,包括手术、康复、水下探索,甚至是灾难情景。该项目将在之前所做工作的基础上发展,雄心勃勃地想要制造一种可以用四条充气腿行走的机器人,类似于章鱼的四肢。分析了相关文献,还表明,与生物腿类似的充气肢体将更有能力适应环境,而不需要大量的计算能力,这一假设得到了极大的支持。截至撰写本文时,还没有这样的机器人存在;这突显了拟议研究的重要性。AIMS/OBJECTIVESAims:1.制造四条充气材料制成的软腿2.建造一个可以支撑所有四条腿的柔软(或坚硬)框架,以及为腿提供动力和控制腿移动方式所需的硬件。使用气动技术来控制腿部的压力,并利用压力的变化让腿部行走目的:第一步是创造一个单一的充气腿设计,将参考文献中的以前的工作。一旦制作完成,将根据它在空气压力下的弯曲程度进行测试。下一步将是制造一个框架(机器人的身体),它将能够支撑这些腿中的四条,并根据增加/减少的气压控制它们的移动方式。最后,机器人的性能将根据它在不依赖僵硬的肢体或大量计算机能力的情况下在不同环境中行走的能力进行测试。方法研究的主线将基于设计一种完全充气的腿,它可以根据内部压力的大小弯曲。这将需要从各种不同的物理科学领域汲取知识。为了成功制造充气肢体,需要在可控空气增压技术领域进行新的研究,以便机器人不依赖外部空气压缩机。这一切都需要建立在一个强大的传感器网络基础上。将这种传感器应用于提议的机器人还需要进行新的研究才能成功实施。https://epsrc.ukri.org/research/ourportfolio/researchareas/:Artificial智能技术认为,这是一个广泛的主题,预计将与以下EPSRC主题保持一致控制工程电机和驱动器/电磁学工程设计图像和视觉计算机器人传感器和仪器软件工程合成生物学

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Development of a quadruped robot with bio-inspired mechanisms for highly efficient dynamic locomotion
开发具有仿生机制的四足机器人,实现高效动态运动
  • 批准号:
    20K22389
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Limit Cycle Control of a Quadruped Robot Using Gait Pattern Control and Multi-Degree-of-Freedom Vibration Control
使用步态模式控制和多自由度振动控制的四足机器人极限环控制
  • 批准号:
    18K04003
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A high-speed quadruped legged robot equipped with a power transmission mechanism capable of extracting large amount of energy
配备可提取大量能量的动力传输机构的高速四足足机器人
  • 批准号:
    18H01412
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tactile Feet and Online Learning for Robust Control of a Quadruped Robot in Challenging Terrain
触觉足和在线学习在具有挑战性的地形中实现四足机器人的鲁棒控制
  • 批准号:
    1951503
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
Robotics for hazardous environments; A mechatronic tail for dynamic compensation of a robotic arm applied to a Quadruped robot
适用于危险环境的机器人;
  • 批准号:
    1957210
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
Motion-driven Embodiment in a Quadruped Robot
四足机器人中的运动驱动实施例
  • 批准号:
    16K00361
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High-Efficiency and High-Speed Running of Quadruped Robot with Compliant Legs by Multiple Degree of Freedom Vibration Control
多自由度振动控制柔性腿四足机器人高效高速运行
  • 批准号:
    15K05853
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NRI: Biologically-inspired, hybrid quadruped robot control
NRI:仿生混合四足机器人控制
  • 批准号:
    1427422
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Analysis of the gait generation principle of quadrupeds by a simulated quadruped model and a robot
模拟四足动物模型与机器人分析四足动物步态生成原理
  • 批准号:
    25870084
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of quadruped robot with variable walking mode
可变行走模式四足机器人的研制
  • 批准号:
    24560162
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了