High Conductivity Tunnel Junctions for Next-Generation UV Emitters

用于下一代紫外线发射器的高电导率隧道结

基本信息

  • 批准号:
    1408416
  • 负责人:
  • 金额:
    $ 38.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Ultra violet light sources can greatly impact health and well-being by enabling rapid water purification, biological sensing. However, the light sources available today are too costly, bulky, and inefficient for widespread adoption. Semiconductor based ultra-violet sources can in theory overcome these challenges and enable compact and efficient ultra-violet sources, but they face some fundamental challenges. Ultra-violet light sources are based on wide band gap semiconductors, and these semiconductors have very poor conductivity of positive charge carriers (holes). The poor conductivity of these holes has been a challenge for the last several decades, leading to poor efficiency and low power in solid state emitters. The proposed project will circumvent this problem through the use of quantum mechanical tunneling that allows positively charged carriers to be injected. The research proposed is expected to enable a new class of compact, efficient, and bright ultra-violet light sources that would find direct applications in water treatment plants, disease prevention, and many other critical applications. The investigator will develop touch sensitive applications (apps) for learning and teaching semiconductor device physics, with an emphasis on intuitive and visual learning of concepts. In addition, the investigator will continue outreach activities by engaging high school students and undergraduates in research projects, as well as by promoting international exchange and experiences. In the proposed work, a transformative new design is proposed for ultra violet light emitting diodes where non-equilibrium tunneling transport is used to inject holes into the active region of the light emitting diode. Short wavelength ultra-violet emitters (350 nm) have low efficiency due to the unique challenges presented by wide band gap materials such as AlGaN. Hole doping and transport remain one of the main challenges for AlGaN-based ultra-violet emitters and account for a large portion of the losses. High acceptor ionization energy leads to low hole concentration and high resistivity, as well as imbalance between electron and hole injection, leading to electron overflow. The challenges of making p-contact necessitate absorbing p-type GaN contact layers that lead to further losses. Tunneling injection of holes removes constraints due to thermal ionization, enhances hole injection, thereby increasing the injection efficiency. Advanced modeling and growth techniques will be used to design and demonstrate highly efficient tunneling for the first time in ultra-wide band gap AlGaN materials. Tunnel junctions will be integrated with ultra-violet emitters to show the efficacy of tunneling injection, and to enable devices without any p-contacts. The proposed experimental work will be supported by detailed theory and simulation to verify and predict device operation, and will lead to detailed understanding of tunneling transport in the III-nitride system. The ideas proposed on nanometer scale engineering of tunneling transport and non-equilibrium carrier injection will lead to higher efficiency and new design paradigms for III-nitride ultra-violet emitters, and could also be relevant for bipolar devices based on several other wide band gap semiconductors.
紫外线光源可以通过实现水的快速净化和生物传感,极大地影响健康和福祉。然而,目前可用的光源过于昂贵,体积庞大,效率低下,无法广泛采用。基于半导体的紫外光源理论上可以克服这些挑战,实现紧凑高效的紫外光源,但它们面临一些根本性的挑战。紫外线光源是基于宽禁带半导体,而这些半导体的正电荷载流子(空穴)导电性很差。在过去的几十年里,这些孔的导电性差一直是一个挑战,导致固态发射器的效率低、功率低。提议的项目将通过使用量子力学隧道,允许注入带正电荷的载流子来解决这个问题。这项研究有望实现一种新型的紧凑、高效、明亮的紫外线光源,这种光源将直接应用于水处理厂、疾病预防和许多其他关键应用。研究者将开发用于学习和教授半导体器件物理的触摸敏感应用程序(app),重点是直观和视觉的概念学习。此外,研究员将继续开展外联活动,让高中生和本科生参与研究项目,以及促进国际交流和经验。在提出的工作中,提出了一种变革性的紫外发光二极管新设计,其中使用非平衡隧道输运将空穴注入发光二极管的有源区域。由于AlGaN等宽禁带材料的独特挑战,短波长紫外线发射器(350 nm)的效率较低。空穴掺杂和输运仍然是基于algan的紫外线发射器面临的主要挑战之一,并且占损失的很大一部分。高受体电离能导致低空穴浓度和高电阻率,以及电子和空穴注入不平衡,导致电子溢出。制造p型接触的挑战需要吸收p型氮化镓接触层,这会导致进一步的损失。孔洞隧道注入消除了热电离的限制,增强了孔洞注入,从而提高了注入效率。先进的建模和生长技术将用于设计和演示超宽带隙AlGaN材料的高效隧道。隧道结将与紫外线发射器集成,以显示隧道注入的有效性,并使器件没有任何p接触。所提出的实验工作将得到详细的理论和模拟的支持,以验证和预测装置的运行,并将导致对iii -氮化物系统隧道输运的详细了解。在隧道输运和非平衡载流子注入的纳米尺度工程上提出的想法将为iii -氮化物紫外发射器带来更高的效率和新的设计范例,并且也可能与基于其他几种宽带隙半导体的双极器件相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddharth Rajan其他文献

Al‐Rich AlGaN Transistors with Regrown p‐AlGaN Gate Layers and Ohmic Contacts
具有再生 p-AlGaN 栅极层和欧姆接触的富铝 AlGaN 晶体管
  • DOI:
    10.1002/admi.202301080
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    B.A. Klein;Andrew A. Allerman;A.M. Armstrong;M. Rosprim;Colin Tyznik;Yinxuan Zhu;C. Joishi;Chris Chae;Siddharth Rajan
  • 通讯作者:
    Siddharth Rajan
Design and Simulation of a III-Nitride Light Emitting Transistor
III 族氮化物发光晶体管的设计与仿真
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohammad Awwad;Sheikh Ifatur Rahman;C. Joishi;B. L. Anderson;Siddharth Rajan
  • 通讯作者:
    Siddharth Rajan
Band alignment of grafted monocrystalline Si (0 0 1)/β-Ga2O3 (0 1 0) p-n heterojunction determined by X-ray photoelectron spectroscopy
X 射线光电子能谱测定接枝单晶 Si (0 0 1)/β-Ga2O3 (0 1 0) p-n 异质结的能带排列
  • DOI:
    10.1016/j.apsusc.2024.159615
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Jiarui Gong;Jie Zhou;Ashok Dheenan;Moheb Sheikhi;F. Alema;T. Ng;S. Pasayat;Qiaoqiang Gan;A. Osinsky;Vincent Gambin;Chirag Gupta;Siddharth Rajan;Boon S. Ooi;Zhenqiang Ma
  • 通讯作者:
    Zhenqiang Ma
All MOCVD grown Al<sub>0.7</sub>Ga<sub>0.3</sub>N/Al<sub>0.5</sub>Ga<sub>0.5</sub>N HFET: An approach to make ohmic contacts to Al-rich AlGaN channel transistors
  • DOI:
    10.1016/j.sse.2019.107696
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hao Xue;Seongmo Hwang;Towhidur Razzak;Choonghee Lee;Gabriel Calderon Ortiz;Zhanbo Xia;Shahadat Hasan Sohel;Jinwoo Hwang;Siddharth Rajan;Asif Khan;Wu Lu
  • 通讯作者:
    Wu Lu

Siddharth Rajan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siddharth Rajan', 18)}}的其他基金

FuSe-TG: Co-design based Wide bandgap Semiconductor Research Center
FuSe-TG:基于协同设计的宽带隙半导体研究中心
  • 批准号:
    2235373
  • 财政年份:
    2023
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Heterogeneous Integration of III-Nitride and Boron Arsenide for Enhanced Thermal and Electronic Performance
合作研究:FuSe:III族氮化物和砷化硼的异质集成以增强热和电子性能
  • 批准号:
    2329108
  • 财政年份:
    2023
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of Electron Beam Lithography System for Next-Generation Nanomanufacturing and Education
MRI:采购用于下一代纳米制造和教育的电子束光刻系统
  • 批准号:
    2018876
  • 财政年份:
    2020
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Standard Grant
76th Device Research Conference (DRC) to be held at the University of California, Santa Barbara, June 24 to 27, 2018
第 76 届设备研究会议 (DRC) 将于 2018 年 6 月 24 日至 27 日在加州大学圣塔芭芭拉分校举行
  • 批准号:
    1836790
  • 财政年份:
    2018
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Standard Grant
Beta-Gallium Oxide Transistors for High Frequency Applications
适用于高频应用的 β-氧化镓晶体管
  • 批准号:
    1809682
  • 财政年份:
    2018
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Collaborative Research: Metal-insulator transitions for low power switching devices
E2CDA:类型 II:协作研究:低功率开关器件的金属绝缘体转换
  • 批准号:
    1740119
  • 财政年份:
    2017
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Continuing Grant
Workshop on Ultra-Wide Band Gap (UWBG) Semiconductors: Research Opportunities and Directions- April 25-26, 2016, Arlington VA
超宽带隙 (UWBG) 半导体研讨会:研究机会和方向 - 2016 年 4 月 25 日至 26 日,弗吉尼亚州阿灵顿
  • 批准号:
    1641056
  • 财政年份:
    2016
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: High Efficiency Ultraviolet Light Emitting Diodes Based on Tunneling
PFI:AIR - TT:基于隧道的高效紫外发光二极管
  • 批准号:
    1640700
  • 财政年份:
    2016
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Standard Grant
Major Research Instrumentation: Development of Epitaxial Growth System for Few Layer Semiconductors
主要研究仪器:少层半导体外延生长系统的开发
  • 批准号:
    1429143
  • 财政年份:
    2014
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Standard Grant
Collaborative Research EAGER: Reliable High Current Density Vacuum Electronics
合作研究 EAGER:可靠的高电流密度真空电子器件
  • 批准号:
    1450508
  • 财政年份:
    2014
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Standard Grant

相似海外基金

FET: Small: CMOS+X: Integration of CMOS and voltage-controlled magnetic tunnel junctions for probabilistic computing
FET:小型:CMOS X:集成 CMOS 和压控磁隧道结,用于概率计算
  • 批准号:
    2322572
  • 财政年份:
    2023
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Standard Grant
Theoretical Study of Neuromorphic Devices Based on Two-dimensional-based Magnetic Tunnel Junctions
基于二维磁隧道结的神经形态器件的理论研究
  • 批准号:
    22KJ2092
  • 财政年份:
    2023
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF-BSF: CNS Core: Small: Reliable and Zero-Power Timekeepers for Intermittently Powered Computing Devices via Stochastic Magnetic Tunnel Junctions
NSF-BSF:CNS 核心:小型:通过随机磁隧道结为间歇供电计算设备提供可靠且零功耗的计时器
  • 批准号:
    2400463
  • 财政年份:
    2023
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Standard Grant
Optical near-field study of ferroelectric tunnel junctions
铁电隧道结的光学近场研究
  • 批准号:
    RGPIN-2019-07023
  • 财政年份:
    2022
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Discovery Grants Program - Individual
EAGER: CRYO: Engineering Charge and Energy Transfer in Superconducting Tunnel Junctions to Achieve Solid-State Refrigeration to Sub-Kelvin Temperatures
EAGER:CRYO:超导隧道结中的工程电荷和能量转移以实现亚开尔文温度的固态制冷
  • 批准号:
    2232201
  • 财政年份:
    2022
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Standard Grant
Fabrication of PVDF tunnel junctions using and evaluation of memristor properties
使用忆阻器特性制造 PVDF 隧道结并评估
  • 批准号:
    21J15833
  • 财政年份:
    2021
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF-BSF: CNS Core: Small: Reliable and Zero-Power Timekeepers for Intermittently Powered Computing Devices via Stochastic Magnetic Tunnel Junctions
NSF-BSF:CNS 核心:小型:通过随机磁隧道结为间歇供电计算设备提供可靠且零功耗的计时器
  • 批准号:
    2106562
  • 财政年份:
    2021
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Standard Grant
Optical near-field study of ferroelectric tunnel junctions
铁电隧道结的光学近场研究
  • 批准号:
    RGPIN-2019-07023
  • 财政年份:
    2021
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Discovery Grants Program - Individual
Development of molecular transistors with organic-radical tunnel junctions towards observation of large magnetoresistance
开发具有有机自由基隧道结的分子晶体管以观察大磁阻
  • 批准号:
    20K21010
  • 财政年份:
    2020
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of artificial intelligence hardware using magnetic tunnel junctions
使用磁隧道结开发人工智能硬件
  • 批准号:
    20H05655
  • 财政年份:
    2020
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了