粘性解と変分問題

粘性解和变分问题

基本信息

  • 批准号:
    14654032
  • 负责人:
  • 金额:
    $ 1.73万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

各地で開かれた研究集会に参加し,国内研究協力者と研究打ち合わせ・共同研究を行い,海外からの研究協力者を招へいしながら,次のような成果を得た.Ornstein-Uhlenbeck作用素の項を持つ粘性ハミルトン・ヤコビ方程式u_t-Δu+αx・Du+H(Du)=f(x)の解について研究し,初期値問題の可解性,時間無限大における解の漸近挙動に関する詳しい結果を得た.この研究はNamah, Fathi, Roquejoffre, Barles・Souganidisの最近の時間無限大における同様な研究を推し進めるもので,非有界領域の場合を扱った点に重要さがある.この研究では,さらに解を構成する際に,まず粘性解の存在を示し,この粘性解が古典解であることを示すという手順が取られている。そのために粘性解が古典解であることを示すことが重要であるが,このための一つの自然な方法を提示している。Hamilton-Jacobi方程式u_t+αx・Du+H(Du)fx)についても,Hが凸関数の場合に全空間上での解の時間無限大での漸近挙動について一般的な仮定のもとで収束定理を得ることが出来た.この漸近挙動の考察において弱KAM定理で導入されたHamilton-Jacobi方程式のAubry集合が重要な役割を果たす。この集合を特定し,最適制御の値関数として解を捉え,時間無限大での解の挙動を解析した.これまでの研究でHamilton-Jacobi方程式に対する緩和法を導入し(より正確には,緩和現象の発現数学的に捉え),比較的一般の非凸なHamiltonianを持つHamilton-Jacobi方程式に対して緩和現象の発現を示した.特に,今年度は,初期値問題を考察し,緩和現象の発現のための,確認し易い十分条件を確立した.
The Ornstein-Uhlenbeck action element term maintains the viscosity of the equation u_t-Δu+αx·Du+H(Du)=f(x). Time infinite solution asymptotic motion related to detailed results. This research is Namah, Fathi, Roquejoffre, Barles·Souganidis of the most recent infinite time. This study shows the existence of viscous solutions when the solutions are formed, and the viscous solutions are obtained by hand. The classical solution of viscosity is important, and the natural method is suggested. Hamilton-Jacobi equation u_t+αx·Du+H(Du)fx),H = convex number, infinite solution time on the whole space, asymptotic motion, general solution theorem. The weak KAM theorem is introduced into the Aubry set of Hamilton-Jacobi equations. The set of optimal control parameters is specified, the solution is solved, and the time is infinite. This study introduces the relaxation method for Hamilton-Jacobi equations, and compares the general nonconvex Hamiltonian equation with the relaxation method for Hamilton-Jacobi equations. In particular, this year, the initial problems were investigated, and the mitigation phenomenon was identified.

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Ishii, P.Loreti: "Relaxation in an L^∞ optimization problem"Proc.Royal Soc.Edinburgh. 133(未定). (2003)
H.Ishii,P.Loreti:“L^∞ 优化问题中的松弛”Proc.Royal Soc.Edinburgh 133(TBD)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A level set approach to the wearing process of a nonconvex stone.
非凸宝石磨损过程的水平设置方法。
H.Ishii: "Simultaneous effects of homogenization and vanishing viscosity in fully nonlinear elliptic equations"Funkcial.Ekvac. 46巻1号. 63-88 (2003)
H. Ishii:“完全非线性椭圆方程中均匀化和消失粘度的同时影响”Funkcial.Ekvac,第 46 卷,第 1. 63-88 期 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nonlinear oblique derivative problems for singular degenerate parabolic equations on a general domain
Motion of a graph by R-curvature.
R 曲率引起的图形运动。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

石井 仁司其他文献

石井 仁司的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('石井 仁司', 18)}}的其他基金

Advancement in viscosity solution theory: asymptotic and boundary value problems
粘度解理论的进展:渐近问题和边值问题
  • 批准号:
    20K03688
  • 财政年份:
    2020
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
超曲面の曲率流における待ち時間の研究
超曲面曲率流等待时间研究
  • 批准号:
    09874034
  • 财政年份:
    1997
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
Hamilton-Jacobi 方程式に対する特異摂動問題の研究
Hamilton-Jacobi方程奇异摄动问题的研究
  • 批准号:
    08640236
  • 财政年份:
    1996
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形偏微分方程式の粘性解とその応用の研究
非线性偏微分方程粘性解及其应用研究
  • 批准号:
    07640249
  • 财政年份:
    1995
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非線形偏微分方程式と粘性解の研究
非线性偏微分方程和粘性解的研究
  • 批准号:
    06640271
  • 财政年份:
    1994
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非線形楕円型及び放物型偏微分方程式の研究
非线性椭圆和抛物型偏微分方程的研究
  • 批准号:
    04640189
  • 财政年份:
    1992
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
ハミルトン・ヤコビ方程式の研究
哈密​​尔顿-雅可比方程的研究
  • 批准号:
    59740087
  • 财政年份:
    1984
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非線形偏微分方程式の解の周期性・概周期性に関する研究
非线性偏微分方程解的周期性及近似周期性研究
  • 批准号:
    X00210----574079
  • 财政年份:
    1980
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

変分法と位相幾何学によるハミルトン系の新たな理論の構築と展開
使用变分方法和拓扑构建和发展哈密顿系统新理论
  • 批准号:
    23K25778
  • 财政年份:
    2024
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
変分法と位相幾何学によるハミルトン系の新たな理論の構築と展開
使用变分方法和拓扑构建和发展哈密顿系统新理论
  • 批准号:
    23H01081
  • 财政年份:
    2023
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
高頻度高密度観測データ活用のための多重スケールを考慮した変分法データ同化の確立
建立考虑多尺度的变分法资料同化,利用高频、高密度观测资料
  • 批准号:
    21K03667
  • 财政年份:
    2021
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New development of numerical analysis based on the space-time variational method
基于时空变分法的数值分析新进展
  • 批准号:
    21H04431
  • 财政年份:
    2021
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
変分法によるN体問題の周期解の存在証明と安定性解析
使用变分方法证明 N 体问题周期解的存在性和稳定性分析
  • 批准号:
    20J21214
  • 财政年份:
    2020
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
現実的核力に基づく変分法による核物質状態方程式の作成と原始中性子星への応用
基于真实核力的变分法建立核物质状态方程及其在原初中子星中的应用
  • 批准号:
    20K03979
  • 财政年份:
    2020
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quotスキームを用いた小林-ヒッチン対応及びヒッグズ束への変分法的アプローチ
使用 Quot 方案实现小林希钦对应和希格斯丛的变分法
  • 批准号:
    19K14524
  • 财政年份:
    2019
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Extension of the supernova equation of state to Lambda hypernuclear system by using a variational method
变分法将超新星状态方程推广到Lambda超核系统
  • 批准号:
    18K13551
  • 财政年份:
    2018
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
変分法による周期軌道の個数評価と分岐解析および複雑な軌道の存在証明
使用变分法评估周期轨道的数量、分岔分析以及复轨道存在性的证明
  • 批准号:
    18K03366
  • 财政年份:
    2018
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research Initiation Award: Central Configurations, New Variational Method and Periodic Solutions in Celestial Mechanics
研究启动奖:天体力学的中心构型、新变分法和周期解
  • 批准号:
    1661203
  • 财政年份:
    2016
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了