単体的複体と凸多面体の離散構造の代数的諸相

单纯复形和凸多面体的离散结构的代数方面

基本信息

  • 批准号:
    06640002
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 无数据
  • 项目状态:
    已结题

项目摘要

近年,現代数学の様々な分野において離散構造の重要性が認識されてきた.古典的な組合せ論の研究対象である単体的複体,半順序集合や凸多面体に限っても,その面,鎖の個数や格子点の数え上げは可換代数や代数幾何と深い接点を持つことが判明し,更に,凸多面体の三角形分割の組合せ論は超幾何函数の理論などとの相互関係を保ちながら急激に進展している.このような現状において,当該研究の目的は(1)凸多面体の離散構造の研究を代数的側面から刺激し進展させること,及び(2)単体的複体に付随する可換代数の代数的不変量を組合せ論的に記述することであった.目的(1)について,当該年度は,整凸多面体P⊂R^Nに含まれる格子点の個数i(P,n)の母函数から定義されるδ-列の組合せ論的特徴付けを探究した.我々は,函数i(P,n)をHilbert函数とする可換整域A(P)を定義しその代数的振舞からPのδ-列の組合せ論的諸性質を研究した.更に,可換整域A(P)が次数1の元で生成されるならば,Pのδ-列はいわゆる上限定理型の不等式を満たすことに着目し,A(P)が次数1の元で生成されるための必要十分条件をPの組合せ論で記述することを試み,部分的な成果を得た.目的(2)について,当該年度は,単体的複体Δに付随するStanley-Reisner環k[Δ]のBetti数列を組合せ論的に記述する研究を遂行した.我々は,k[Δ]の有限自由分解が純となるような単体的複体Δを組合せ論的に分類することに挑戦したが,その際,計算代数の成果とグレブナ-基底の基礎理論を使って,計算機実験をしたことが有益であった.更に,Δが有限半順序集合Xの順序複体のとき,k[Δ]のBetti数列をXのメビウス函数を使って表示する方法を模索し,modular束Xの順序複体のCohen-Macaulay型を計算するための効果的な公式を発見した.
In recent years, the importance of discrete structures in modern mathematics has been recognized. The classical combinatorial theory is concerned with the study of the complex, semi-sequential set, convex polyhedron, limit, plane, number of locks, number of lattice points, commutative algebra, algebraic geometry, deep junction, identification, and further, the combinatorial theory of triangular partitions of convex polyhedra and the theory of hypergeometric functions. The purpose of this study is to (1) stimulate the progress of the study of discrete structures of convex polyhedra, and (2) describe the algebraic invariants of commutative algebras associated with the complex of single bodies. Objective (1) To explore the characteristics of the combinatorial theory of the convex polyhedron P R^N containing the number i(P,n) of lattice points and the definition of the generating function of δ-row when the year is over. In this paper, we study the properties of Hilbert function i(P,n), commutative integral field A(P), algebraic oscillation, delta sequence and combinatorial theory. Furthermore, commutative integral field A(P) is generated by elements of degree 1,P is δ-column,P is upper bound theorem, A (P) is generated by elements of degree 1,A(P) is generated by elements of degree 1, P is generated by elements of degree 1,A(P) is generated by elements of degree 1, P is generated by elements of degree Objective (2) To study the description of Stanley-Reisner rings k[Δ] and Betti series in combination theory when the complex Δ of a single body is followed in the year. The finite free decomposition of k[Δ] is useful for the classification of combinatorial theory. Furthermore, the expression method of the Betti sequence of X and the function of X for k[Δ] of the finite semi-ordered set X is modeled, and the formula for calculating the Cohen-Macaulay type of the ordered complex of modular bundle X is presented.

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takayuki Hibi: "Cohen-Macaulay type of the face poset of a plane graph" Graphs and Combinatorics. 10. 133-138 (1994)
Takayuki Hibi:“平面图的面偏序集的 Cohen-Macaulay 类型”图和组合学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
日比孝之: "可換代数と組合せ論" シュプリンガー・東京, 187 (1995)
Takayuki Hibi:“交换代数和组合学”Springer Tokyo,187(1995)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takayuki Hibi: "Canonical modules and Cohen-Macaulay types of partially ordered sets" Advances in Mathematics. 106. 118-121 (1994)
Takayuki Hibi:“部分有序集的规范模和 Cohen-Macaulay 类型”数学进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takayuki Hibi: "A lower bourd theorem for Ehrbart polynomials of convex polytopes" Advances in Mathematics. 105. 162-165 (1994)
Takayuki Hibi:“凸多面体埃尔巴特多项式的下布尔定理”数学进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takayuki Hibi: "Cohen-Macaulay types of Cohen-Macaulay complexes" Journal of Algebra. 168. 780-797 (1994)
Takayuki Hibi:“Cohen-Macaulay 复合体的 Cohen-Macaulay 类型”代数杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

日比 孝之其他文献

基本的な動きを育てる(1)
发展基本动作 (1)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Abe;K. Nuida;and Y. Numata;Mutsumi Saito;Mutsumi Saito;齋藤 睦;柳川浩二;Ichiro Shimada;Y. Numata;Mutsumi Saito;Mutsumi Saito;K. Yanagawa;齋藤 睦;齋藤 睦;Hiroshi Yamashita;Y. Numata;Ichiro Shimada;Y. Numata;K. Yanagawa;Hiroshi Yamashita;Mutsumi Saito;柳川浩二;柳川浩二;Ichiro Shimada;Mutsumi Saito;齋藤 睦;山下 博;齋藤 睦;山下 博(述)阿部紀行(記);齋藤 睦;日比 孝之;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子
  • 通讯作者:
    飯村敦子
とぶ力を育てる
发展飞行能力
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Abe;K. Nuida;and Y. Numata;Mutsumi Saito;Mutsumi Saito;齋藤 睦;柳川浩二;Ichiro Shimada;Y. Numata;Mutsumi Saito;Mutsumi Saito;K. Yanagawa;齋藤 睦;齋藤 睦;Hiroshi Yamashita;Y. Numata;Ichiro Shimada;Y. Numata;K. Yanagawa;Hiroshi Yamashita;Mutsumi Saito;柳川浩二;柳川浩二;Ichiro Shimada;Mutsumi Saito;齋藤 睦;山下 博;齋藤 睦;山下 博(述)阿部紀行(記);齋藤 睦;日比 孝之;飯村敦子;飯村敦子;飯村敦子
  • 通讯作者:
    飯村敦子
バランスの力を育てる(1)
发展平衡力(1)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Abe;K. Nuida;and Y. Numata;Mutsumi Saito;Mutsumi Saito;齋藤 睦;柳川浩二;Ichiro Shimada;Y. Numata;Mutsumi Saito;Mutsumi Saito;K. Yanagawa;齋藤 睦;齋藤 睦;Hiroshi Yamashita;Y. Numata;Ichiro Shimada;Y. Numata;K. Yanagawa;Hiroshi Yamashita;Mutsumi Saito;柳川浩二;柳川浩二;Ichiro Shimada;Mutsumi Saito;齋藤 睦;山下 博;齋藤 睦;山下 博(述)阿部紀行(記);齋藤 睦;日比 孝之;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子
  • 通讯作者:
    飯村敦子
エッジイデアルの extremal ベッチ数
理想边缘的极值投注数
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    日比 孝之;木村 杏子;松田 一徳
  • 通讯作者:
    松田 一徳
Algebraic combinatorics on convex polytopes
凸多胞形上的代数组合
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    日比 孝之
  • 通讯作者:
    日比 孝之

日比 孝之的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('日比 孝之', 18)}}的其他基金

多項式環のシチジー理論を戦略とするグラフ理論の古典論の再編と現代的潮流の誕生
以多项式环理论为策略的图论经典理论的重组及现代趋势的诞生
  • 批准号:
    20KK0059
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
シチジー理論とシンボリック冪の現代的潮流を踏襲する可換環論の戦略的研究の展開
顺应citigi理论和符号幂的现代潮流开展交换环理论的战略研究
  • 批准号:
    19H00637
  • 财政年份:
    2019
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
ポリオミノに付随する二項式イデアルの代数的及び組合せ論的探究
与多项骨牌相关的二项式理想的代数和组合探索
  • 批准号:
    14F04318
  • 财政年份:
    2014
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
アルゴリズム的な着想によるg予想の肯定的な解決への挑戦
使用算法思想积极解决g猜想的挑战
  • 批准号:
    18654020
  • 财政年份:
    2006
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
計算可換代数と計算代数幾何についての国際研究集会の企画調査
计算交换代数与计算代数几何国际研究会议的策划与研究
  • 批准号:
    18634001
  • 财政年份:
    2006
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
グレブナー基底の理論的有効性と実践的有効性に関する共同研究の企画調査
格罗布纳基础的理论和实践有效性联合研究的规划和调查
  • 批准号:
    17634001
  • 财政年份:
    2005
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
グレブナー基底の理論的有効性と実践的有効性についての国際研究集会の企画調査
格罗布纳基础的理论和实践有效性国际研究会议的策划和调查
  • 批准号:
    15634001
  • 财政年份:
    2003
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
強パーフェクトグラフ予想と逆辞書式イニシャルイデアルの研究
强完美图猜想与逆字典序初始理想研究
  • 批准号:
    14654022
  • 财政年份:
    2002
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
凸多面体を巡る組合せ数学の代数的諸相についての国際研究集会の企画調査
凸多面体组合数学代数方面国际研究会议的策划与研究
  • 批准号:
    14604002
  • 财政年份:
    2002
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
有限グラフの高次連結度の計算とベッチ数列の消滅理論
有限图的高阶连通性计算和Betti序列的消失理论
  • 批准号:
    09874047
  • 财政年份:
    1997
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Exploratory Research

相似海外基金

単体的複体のトポロジー的組合せ論とグラフの非巡回的向き付け上の最適化問題の研究
单纯复形拓扑组合及图无环方向优化问题研究
  • 批准号:
    15740052
  • 财政年份:
    2003
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
有限数列と単体的複体の組合せ論
有限序列和单纯复形的组合
  • 批准号:
    03740001
  • 财政年份:
    1991
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了