非線形分散型及び波動方程式における特異なランダム動力学

非线性色散和波动方程中的奇异随机动力学

基本信息

  • 批准号:
    23H01079
  • 负责人:
  • 金额:
    $ 10.23万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2023
  • 资助国家:
    日本
  • 起止时间:
    2023-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

福泉 麗佳其他文献

Stability of Standing Waves for Nonlinear Schrodinger Equations with Double Power Nonlinearity (Harmonic Analysis and Nonlinear Partial Differential Equations)
具有双幂非线性的非线性薛定谔方程的驻波稳定性(调和分析和非线性偏微分方程)
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    福泉 麗佳
  • 通讯作者:
    福泉 麗佳

福泉 麗佳的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('福泉 麗佳', 18)}}的其他基金

非線形分散型及び波動方程式における特異なランダム動力学
非线性色散和波动方程中的奇异随机动力学
  • 批准号:
    23K25776
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
非線形シュレディンガー方程式における確率的効果
非线性薛定谔方程中的随机效应
  • 批准号:
    20K03669
  • 财政年份:
    2020
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
量子流体力学に現れる確率偏微分方程式の研究
量子流体力学中随机偏微分方程的研究
  • 批准号:
    19KK0066
  • 财政年份:
    2019
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
非線形分散型方程式の孤立波解の安定性について
非线性色散方程孤立波解的稳定性
  • 批准号:
    17740071
  • 财政年份:
    2005
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
非線形分散型方程式の孤立波解の安定性と不安定性
非线性色散方程孤立波解的稳定性和不稳定性
  • 批准号:
    02J10482
  • 财政年份:
    2002
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

電磁場中の非線形シュレディンガー方程式の修正散乱についての多角的研究
电磁场中非线性薛定谔方程修正散射的多方面研究
  • 批准号:
    24K06796
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
変分的手法による非線形シュレディンガー方程式の解の存在性及び多重性
使用变分法求解非线性薛定谔方程的存在性和多重性
  • 批准号:
    24KJ2070
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形シュレディンガー方程式の初期値による解の大域挙動の分類
通过非线性薛定谔方程的初始值对解的全局行为进行分类
  • 批准号:
    22KJ2778
  • 财政年份:
    2023
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
不変性に乏しい非線形シュレディンガー方程式の時間挙動を決定づける初期値の分類
确定不变性较差的非线性薛定谔方程的时间行为的初始值的分类
  • 批准号:
    22KJ2907
  • 财政年份:
    2023
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形シュレディンガー方程式における確率的効果
非线性薛定谔方程中的随机效应
  • 批准号:
    20K03669
  • 财政年份:
    2020
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形シュレディンガー方程式の解の挙動を決定づける初期値の分類
确定非线性薛定谔方程解的行为的初始值的分类
  • 批准号:
    19J13300
  • 财政年份:
    2019
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形シュレディンガー方程式の数学解析
非线性薛定谔方程的数学分析
  • 批准号:
    17J05828
  • 财政年份:
    2017
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形シュレディンガー方程式の解の漸近挙動に関する研究
非线性薛定谔方程解的渐近行为研究
  • 批准号:
    20913007
  • 财政年份:
    2008
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Encouragement of Scientists
非線形シュレディンガー方程式の対称性と定在波解の安定性について
非线性薛定谔方程的对称性与驻波解的稳定性
  • 批准号:
    08J56371
  • 财政年份:
    2008
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
変分法を用いた非線形シュレディンガー方程式の定在波の安定性解析
非线性薛定谔方程驻波的变分法稳定性分析
  • 批准号:
    07J04235
  • 财政年份:
    2007
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了