The singular perturbation problem for a diffusion-advection equation

扩散平流方程的奇异摄动问题

基本信息

  • 批准号:
    09640216
  • 负责人:
  • 金额:
    $ 1.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

The aim of this research project is to investigate the behavior of the solution of a diffusion-advection equation with the aid of the numerical analysis or the functional analysis. We considered at first the outline of the behavior through the numerical method. We had the numerical aspect under the useful suggestion of Professor Kawni (Chitose Science and technology University). Namely, there exists the wake after an obstacle and this was conjectured by the method of the investigation of an integral equation. This fact is not yet proved mathematically and it should be done. Each investigator considered his subject and made useful contribution.On the other hand, we investigated the behavior of the solution of the semilinear parabolic equation which is general case of a diffusion-advection equation. And we had several results. For example, we have the relation between the impulsive condition which describes the discontinuous phenomena and the stebility of the solution of the semilinear parabolic equation. And we see that the suitable impulsive condition makes a blowing-up solution stable and blows-up the solution at a desired time. We should investigate an original problem with the aid of these results.
本研究计画的目的是借由数值分析或泛函分析来探讨扩散-平流方程解的性质。我们首先通过数值方法考虑了行为的轮廓。我们在Kawni教授(甲壳糖科学技术大学)的有益建议下进行了数值方面的研究。即障碍物后存在尾流,这是用积分方程研究的方法证明的。这个事实还没有数学证明,应该这样做。另一方面,我们研究了扩散-对流方程的一般情形--半线性抛物方程解的性态。我们得到了几个结果。例如,我们给出了描述半线性抛物型方程解的不连续性的脉冲条件与解的稳定性之间的关系。我们看到,适当的脉冲条件使爆破解稳定,并在所需的时间爆破。我们应该借助这些结果来研究一个原始问题。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takashi Kaminogo: "Topological degree of solution mappings in functional and ordinary differntial equations" Tohoku Mathematical Journal. 49. 529-535 (1997)
Takashi Kaminogo:“泛函和常微分方程解映射的拓扑度”东北数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kiyokazu Nakagawa: "Asymptotic Behaviour of Solutions of an Impulsive Semilinear Parabolic Candy Problem" Proc 8^<th> Inter.Cell.on Piff Egs VSP.,Necherlands. 335-340 (1998)
Kiyokazu Nakakawa:“脉冲半线性抛物线糖果问题解的渐近行为”Proc 8^<th> Inter.Cell.on Piff Egs VSP.,Necherlands。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kiyokazu Nakagawa: "Asymptotic behavior of solutions of an impulsive Semilinear parabolic Cauchy problem" Proceedings of the eighth international colloquium on differential equations, VSP,Netherlands. 335-340 (1998)
Kiyokazu Nakakawa:“脉冲半线性抛物线柯西问题解的渐近行为”第八届国际微分方程学术研讨会论文集,VSP,荷兰。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takeshi Sekiguchi: "Multifractal Spectrum of Multinomial Measures" Proceedings of the Japan Academy. 73ser.A(7). 123-125 (1997)
Takeshi Sekiguchi:“多项测度的多重分形谱”日本科学院院刊。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takeshi Sekiguchi et al.: "Multifractal Spectrum of Multinomial Measures" Proceedings of the Japan Academy. Vol.73 SerA.no.7. 123-125 (1997)
Takeshi Sekiguchi 等人:“多项测度的多重分形谱”日本科学院院刊。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAGAWA Kiyokazu其他文献

NAKAGAWA Kiyokazu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAGAWA Kiyokazu', 18)}}的其他基金

Formation technology development of high quality Ge/Si heterostructures using hydrogen radical
利用氢自由基形成高质量Ge/Si异质结构的技术开发
  • 批准号:
    25390065
  • 财政年份:
    2013
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of selective heating method using microwave plasmaexcited species
利用微波等离子体激发物种的选择性加热方法的开发
  • 批准号:
    22560007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Selective and rapid heating method for polycrystallization of amorphous Si using microwave plasma irradiation
微波等离子体辐照非晶硅多晶选择性快速加热方法
  • 批准号:
    18560007
  • 财政年份:
    2006
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Formation of virtual substrates for strained SiGe heterostructures and its application to high mobility FETs
应变 SiGe 异质结构虚拟衬底的形成及其在高迁移率 FET 中的应用
  • 批准号:
    13650007
  • 财政年份:
    2001
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Applications of Geometrical Singular Perturbation Theory in Hyperplasticity Accelerated Ratcheting Models
几何奇异摄动理论在超塑性加速棘轮模型中的应用
  • 批准号:
    2888423
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Studentship
Global structure of solutions for differential equations of singular perturbation type and exact WKB analysis
奇异摄动型微分方程解的全局结构及精确WKB分析
  • 批准号:
    19H01794
  • 财政年份:
    2019
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Painlevé paradox and geometric singular perturbation theory
Painlevé 悖论和几何奇异微扰理论
  • 批准号:
    1939397
  • 财政年份:
    2017
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Studentship
Dynamical Systems and Singular Perturbation Theory for Multiscale Reaction-Diffusion Systems
多尺度反应扩散系统的动力系统和奇异摄动理论
  • 批准号:
    1616064
  • 财政年份:
    2016
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Continuing Grant
Geometric Singular Perturbation Analysis of a Mathematical Model of Stem Cells
干细胞数学模型的几何奇异摄动分析
  • 批准号:
    478556-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.66万
  • 项目类别:
    University Undergraduate Student Research Awards
Phantom: A topological method to analyze macro-system and its singular perturbation
Phantom:一种分析宏观系统及其奇异摄动的拓扑方法
  • 批准号:
    15K13532
  • 财政年份:
    2015
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
The structure theory of differential equations by the algebraic analysis of singular perturbation theory
奇异摄动理论的代数分析微分方程的结构理论
  • 批准号:
    24340026
  • 财政年份:
    2012
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Singular perturbation/bifurcation analysis of the cardiac sinoatrial node model in consideration of its heterogeneous structure and the study on the generation mechanism of synchronized oscillations
考虑异质结构的心脏窦房结模型奇异摄动/分岔分析及同步振荡产生机制研究
  • 批准号:
    24500274
  • 财政年份:
    2012
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena
多尺度反应扩散现象的动力系统和奇异摄动理论
  • 批准号:
    1109587
  • 财政年份:
    2011
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Continuing Grant
Nonlinear hyperbolic-parabolic singular perturbation
非线性双曲-抛物线奇异摄动
  • 批准号:
    19540199
  • 财政年份:
    2007
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了