RAISE-TAQS: Integrated Room Temperature Single-Photon based Quantum-Secure LiFi Systems

RAISE-TAQS:集成室温单光子量子安全 LiFi 系统

基本信息

  • 批准号:
    1839196
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Gallium Nitride based LEDs have revolutionized solid-state lighting. Because unlike incandescent bulbs, LEDs can be switched and modulated at GHz frequencies, they are enabling light fidelity (LiFi) as a means of point to point communications using visible light in free space. LiFi is similar to WiFi, but its penetration is expected to rival, or exceed WiFi as GaN LEDs replace residential, industrial, street, and automotive lighting. Making free- space LiFi communication secure in the quantum sense in the future is both a timely opportunity, and of paramount technological importance. Secure communication systems are possible using the quantum properties of single-photons that prevent eavesdropping, and guarantee security. A successful demonstration of the devices and systems proposed in this research would not just enhance security in the rapidly emerging LiFi networks but also make quantum technologies come out from the research labs and reach people's houses. The proposed research is therefore highly transformative. In addition, the strong emphasis on material and device physics, optical and quantum sciences, and communication networks will all provide a rich set of areas for exploration and graduate student research. Technical: The PIs of this proposal have discovered single photon sources in wide-bandgap nitrides that are 20x brighter than the NV centers in diamond, and importantly, operate at room temperature. They have developed a fundamentally new structure for nitride LEDs using buried tunnel junctions, with which it becomes possible to electrically pump the single photon emitter. The engineering-led goals of the proposed project are threefold: (a) To build the first room-temperature electrically pumped on-demand single photon source completely integrated on the GaN material system, (b) To design and characterize the spectral properties, bandwidth, efficiency, packing density, and potential entanglement properties of the nitride single photon sources, and (c) To theoretically and experimentally identify and test the fundamental requirements, and limits of quantum-secure LiFi communication systems. This project explores and exploits the physics of single photon emitters, advances in quantum materials, and secure LiFi systems design and engineering, leading to the implementation quantum Lifi in a practical way. Every step in this quest will accelerate the development and deployment of quantum technologies. The team will systematically explore the basic physics of h-BN quantum emitters and III-nitride quantum dots, their emission rates and wavelengths, and how we can create these emitters deterministically. The Pis seek to discover how to integrate bright III-nitride LED structures with quantum emitters and efficiently gather the quantum and classical light in separate channels. Finally, they will engineer these devices in a real-world context and deploy them to ensure private communications guaranteed by the laws of quantum physics. New nitride quantum crystalline materials are key to this proposal. A meaningful international collaboration is proposed with a leading nitride materials group in the world will offer some of the highest quality gallium nitride crystals in the world.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于氮化镓的LED彻底改变了固态照明。与白炽灯泡不同,LED可以在GHz频率下进行开关和调制,因此它们可以实现光保真(LiFi),作为在自由空间中使用可见光进行点对点通信的一种手段。LiFi类似于WiFi,但随着GaN LED取代住宅、工业、街道和汽车照明,其渗透率预计将与WiFi相媲美或超过WiFi。在量子意义上,未来使自由空间LiFi通信安全既是一个及时的机会,也具有至关重要的技术重要性。利用单光子的量子特性,安全通信系统是可能的,可以防止窃听,并保证安全。这项研究中提出的设备和系统的成功演示不仅可以增强快速兴起的LiFi网络的安全性,还可以使量子技术从研究实验室中走出来,进入人们的家中。因此,拟议的研究具有很强的变革性。此外,对材料和设备物理,光学和量子科学以及通信网络的强调都将为探索和研究生研究提供丰富的领域。技术支持:该提案的PI已经在宽带隙氮化物中发现了单光子源,其亮度比金刚石中的NV中心高20倍,重要的是,在室温下工作。他们已经开发出一种使用掩埋隧道结的氮化物LED的全新结构,利用该结构可以电泵浦单光子发射器。拟议项目的工程主导目标有三个方面:(a)构建第一个完全集成在GaN材料系统上的室温电泵浦按需单光子源,(B)设计和表征氮化物单光子源的光谱性质、带宽、效率、堆积密度和潜在的纠缠性质,以及(c)从理论和实验上确定和测试量子安全LiFi通信系统的基本要求和限制。该项目探索和利用单光子发射器的物理学,量子材料的进步以及安全的LiFi系统设计和工程,从而以实用的方式实现量子Lifi。这一探索的每一步都将加速量子技术的开发和部署。该团队将系统地探索h-BN量子发射器和III-氮化物量子点的基本物理,它们的发射速率和波长,以及我们如何确定性地创建这些发射器。Pis寻求发现如何将明亮的III族氮化物LED结构与量子发射器集成在一起,并在单独的通道中有效地收集量子和经典光。最后,他们将在现实世界中设计这些设备,并部署它们以确保量子物理定律所保证的私人通信。新的氮化物量子晶体材料是这一提议的关键。提议与世界领先的氮化物材料集团进行有意义的国际合作,该集团将提供一些世界上最高质量的氮化镓晶体。该奖项反映了NSF的法定使命,并通过使用基金会的知识产权进行评估被认为值得支持优点和更广泛的影响审查标准。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High Internal Quantum Efficiency from AlGaN-Delta-GaN Quantum Well at 260 nm
  • DOI:
    10.1364/cleo_at.2020.af1i.2
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheng Liu;Kevin Lee;Galen Harden;A. Hoffman;H. Xing;D. Jena;Jing Zhang
  • 通讯作者:
    Cheng Liu;Kevin Lee;Galen Harden;A. Hoffman;H. Xing;D. Jena;Jing Zhang
Polarization control in nitride quantum well light emitters enabled by bottom tunnel-junctions
  • DOI:
    10.1063/1.5088041
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    H. Turski;S. Bharadwaj;H. Xing;D. Jena
  • 通讯作者:
    H. Turski;S. Bharadwaj;H. Xing;D. Jena
Monolithically p-down nitride laser diodes and LEDs obtained by MBE using buried tunnel junction design
采用埋入式隧道结设计通过 MBE 获得单片 p-down 氮化物激光二极管和 LED
Rotationally aligned hexagonal boron nitride on sapphire by high-temperature molecular beam epitaxy
  • DOI:
    10.1103/physrevmaterials.3.064001
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    R. Page;Yongjin Cho;J. Casamento;S. Rouvimov;H. Xing;D. Jena
  • 通讯作者:
    R. Page;Yongjin Cho;J. Casamento;S. Rouvimov;H. Xing;D. Jena
Enhanced injection efficiency and light output in bottom tunnel-junction light-emitting diodes
  • DOI:
    10.1364/oe.384021
  • 发表时间:
    2020-02-17
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Bharadwaj, Shyam;Miller, Jeffrey;Turski, Henryk
  • 通讯作者:
    Turski, Henryk
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debdeep Jena其他文献

Two-dimensional semiconductors for transistors
用于晶体管的二维半导体
  • DOI:
    10.1038/natrevmats.2016.52
  • 发表时间:
    2016-08-17
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Manish Chhowalla;Debdeep Jena;Hua Zhang
  • 通讯作者:
    Hua Zhang
Photoluminescence-Based Electron and Lattice Temperature Measurements in GaN-Based HEMTs
  • DOI:
    10.1007/s11664-013-2841-3
  • 发表时间:
    2013-11-23
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Jorge A. Ferrer-Pérez;Bruce Claflin;Debdeep Jena;Mihir Sen;Ramakrishna Vetury;Donald Dorsey
  • 通讯作者:
    Donald Dorsey
Evidence of many-body, fermi-energy edge singularity in InN films grown on GaN buffer layers
GaN 缓冲层上生长的 InN 薄膜中多体费米能边缘奇点的证据
Growth windows of epitaxial NbN x films on c -plane sapphire and their structural and superconducting properties
c面蓝宝石外延NbN x 薄膜的生长窗口及其结构和超导性能
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Wright;Huili Grace;Debdeep Jena
  • 通讯作者:
    Debdeep Jena
スパッタアニールAlN上GaN/AlN 2次元正孔ガス構造の電気特性評価と微細構造解析
溅射退火AlN上GaN/AlN二维空穴气体结构的电性能评估和微观结构分析
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    西村 海音;中西 悠太;林 侑介;藤平 哲也;Chaudhuri Reet;Cho Yongjin;Xing Huili (Grace);Debdeep Jena;上杉 謙次郎;三宅 秀人;酒井 朗
  • 通讯作者:
    酒井 朗

Debdeep Jena的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debdeep Jena', 18)}}的其他基金

I-Corps: Aluminum Nitride-based Power Transistors
I-Corps:氮化铝基功率晶体管
  • 批准号:
    1933825
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Polarization-Driven Electron-Hole Bilayers in Quantum Wells
量子阱中偏振驱动的电子空穴双层
  • 批准号:
    1710298
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
EFRI NewLAW: Non-Reciprocal Wave Propagation Devices by Fermionic Emulation and Exceptional Point Physics
EFRI NewLAW:通过费米子仿真和异常点物理实现非互易波传播装置
  • 批准号:
    1741694
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: Extreme Bandgap Semiconductors
DMREF:协作研究:极限带隙半导体
  • 批准号:
    1534303
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
2D Crystal Semiconductors: Electron Transport and Device Applications
2D 晶体半导体:电子传输和器件应用
  • 批准号:
    1523356
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
2D Crystal Semiconductors: Electron Transport and Device Applications
2D 晶体半导体:电子传输和器件应用
  • 批准号:
    1232191
  • 财政年份:
    2012
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Nanoscale Optoelectronics with Polarization and Bandgap Engineered Nitride Nanowire/Silicon Heterostructures
具有偏振和带隙工程氮化物纳米线/硅异质结构的纳米级光电器件
  • 批准号:
    0907583
  • 财政年份:
    2009
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Evaluation of Graphene Nanoribbons for Lateral Bandgap Engineered Devices
用于横向带隙工程器件的石墨烯纳米带的评估
  • 批准号:
    0802125
  • 财政年份:
    2008
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CAREER: Dielectric Engineering of Quantum Wire Solids: Fundamentals to Applications
职业:量子线固体的介电工程:应用基础
  • 批准号:
    0645698
  • 财政年份:
    2007
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了