高余次元境界値問題と大域解析

高维边值问题及全局分析

基本信息

  • 批准号:
    09740025
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

高余次元境界値問題の研究においては、偏微分方程式の解の延長問題を研究してきた。すなはち、楕円型方程式の解の定義域が自動的に延長するという、柏原ー河合の定理をより一般の方程式系へ拡張する計画である。今年度は、当研究者が予想した最も広いクラスの系にまで結果を拡張することができ、しかもdistribution解の接続についての新しい結果や、確定特異点的な方程式系についての対応する結果を証明することができた(二つの結果とも掲載予定)。また、これらの研究に使用された層のマイクロ台をカットする手法やD-加群の消滅輪体の理論を利用して、Ramified Cauchy問題やE-加群に対するCauchy-Kowalevski型定理の研究を開始した。前者の研究では、D'Agnolo-Schapiraの結果の証明の簡易化に成功し、その様々なバリエーションが得られただけでなく、D-加群の正則関数解の複体の消滅輪体の超局所的視点からの研究が今後可能になると期待され、現在鋭意研究中である。 またE-加群に対するCauchy-Kowalevski型定理の研究では、石村氏の定理の証明で不明解であった箇所に正しい証明を与えることに成功した。 この結果はE-加群の逆像に関するものだが、順像すなはちE-加群の積分についての結果を最終目標としている。研究実施計画の「D-加群の積分変換」に取り組むための最初の一歩になることが期待される。また佐藤超関数解についてよく知られた偏微分方程式の解の消滅定理を、Andronikof氏の理論を用いることで関数空間がdistributionの場合にも証明した。これについては、フランスのColin氏が構成した柏原-Schapiraの函手の積分変換の理論を応用して、無限回微分可能関数での解の研究を開始した。以上の研究の他、D-加群の積分変換や特性サイクルの理論の指数定浬への応用、表現論とD-加群等の分野について見識をひろめるために、他の研究者と研究連絡をおこなった。特に最近のSchmid-Vilonenらによる表現論への応用についての学習に努めた。
Study on the Extension of Solutions of Partial Differential Equations The domain of the solution of the equation is automatically extended, and the theorem of the combination of Kashiwara and the general equation system is extended. This year, when the researchers think about the most widely used system, the results are expanded, the distribution solution is connected, the new results are obtained, and the equations for determining the unique points are proved. The study of the Cauchy-Kowalevski type theorem on the basis of the Ramified Cauchy problem and the E-additive group theory has begun. The study of the former is successful in simplifying the proof of D'Agnolo-Schapira's results, and the study of the complex of D-plus-group's canonical relation solution and the point of view of the elimination of the wheel is now in progress. A Study on Cauchy-Kowalevski Type Theorem of E-plus Group and the Proof of Ishimura's Theorem The result is the final goal of the inverse image of the E-addition group and the integral of the E-addition group. The first step of the research project "integral transformation of D-addition group" is to select the group and the expectation. Andronikof's theory is used to prove the elimination theorem of solutions of partial differential equations. The theory of integral transformation of the Kashiwara-Schapira function is applied to the study of the solution of the infinite derivative possible relation. The above research includes other, D-plus group integral transformation, characteristic, theory, index determination, expression theory, D-plus group, etc., and other researchers and research contacts. In particular, the latest Schmid-Vilonen performance theory is used to study hard.

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
竹内 潔: "A Hartoys-type Theorem for Solutions to Systems with Regular Singularities" Arch.cle Math. (Basel). to appear. (1999)
Kiyoshi Takeuchi:“具有正则奇异性的系统的 Hartoys 型定理”,Arch.cle Math(巴塞尔)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
竹内 潔: "Microlocal Inverse Image and Bimicrolocalization" Publ.R.I.M.S.34・2. 135-153 (1998)
Kiyoshi Takeuchi:“微局部逆图像和双微局部化”Publ.R.I.M.S.34・2(1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
竹内 潔: "Edge-of-the-wedge type Theorems.for Hyperfunction Solutions" Duke Math.Journal. 89・1. 109-132 (1997)
Kiyoshi Takeuchi:“超函数解的楔形定理”杜克数学杂志 89・1(1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
竹内 潔: "Extension Theorems for the Distribution Solutions to D-modules with Regular Singularities" Proc.Amer.Math.Soc.to appear. (1999)
Kiyoshi Takeuchi:“具有正则奇点的 D 模分布解的扩展定理”Proc.Amer.Math.Soc.to 出现(1999 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
竹内 潔: "Edge-of-the-wedge type theorems for hyperfunction solutions" Duke Math.J.89・1. 109-132 (1997)
Kiyoshi Takeuchi:“超函数解的楔形定理”Duke Math.J.89・1(1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

竹内 潔其他文献

Newton polyhedra, constructible sheares and their applications
牛顿多面体、可构造剪及其应用
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    竹内潔;松井優;竹内 潔;竹内 潔・松井 優;竹内 潔・松井 優;竹内潔;竹内潔;竹内潔
  • 通讯作者:
    竹内潔
Ultra-differentiable classes and intersection theorems
超微分类和交集定理
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1
  • 作者:
    竹内潔;松井優;竹内潔・松井優;竹内潔・松井優;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内 潔;竹内 潔;竹内 潔;竹内 潔;Otto Liess and Yasunori Okada
  • 通讯作者:
    Otto Liess and Yasunori Okada
Massera type theorems in hyperfunctions with reflexive Banach values
具有反身 Banach 值的超函数中的 Massera 型定理
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    竹内潔;松井優;竹内潔・松井優;竹内潔・松井優;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内 潔;竹内 潔;竹内 潔;竹内 潔;Otto Liess and Yasunori Okada;Yasunori Okada
  • 通讯作者:
    Yasunori Okada
有界超函数と周期線形函数方程式について
关于有界超函数和周期线性函数方程
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    竹内潔;松井優;竹内潔・松井優;竹内潔・松井優;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内 潔;竹内 潔;竹内 潔;竹内 潔;Otto Liess and Yasunori Okada;Yasunori Okada;Yasunori Okada;Otto Liess and Yasunori Okada;Yasunori Okada;岡田靖則
  • 通讯作者:
    岡田靖則
Bounded hyperfunctions and Massera type theorems
有界超函数和 Massera 型定理
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    竹内潔;松井優;竹内潔・松井優;竹内潔・松井優;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内潔;竹内 潔;竹内 潔;竹内 潔;竹内 潔;Otto Liess and Yasunori Okada;Yasunori Okada;Yasunori Okada;Otto Liess and Yasunori Okada;Yasunori Okada;岡田靖則;Yasunori Okada;Yasunori Okada
  • 通讯作者:
    Yasunori Okada

竹内 潔的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('竹内 潔', 18)}}的其他基金

不確定特異点を持つD-加群と特異点理論の研究
不确定奇点D模及奇点理论研究
  • 批准号:
    24K06681
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
地域劇場の公的支援モデルの再構築に関する研究
重建地方剧院公众支持模式研究
  • 批准号:
    22K00210
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
自治体文化芸術政策の地方創生総合戦略への位置付けをめぐる政策形成過程に関する研究
地方政府文化艺术政策在区域综合振兴战略中定位的政策制定过程研究
  • 批准号:
    18K12264
  • 财政年份:
    2018
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
自治体文化芸術政策の実態を踏まえたモデリングに関する総合的研究
基于地方政府文化艺术政策实际情况的建模综合研究
  • 批准号:
    14J03611
  • 财政年份:
    2014
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
アフリカ熱帯森林における自然管理のローカル・ガバナンス構築の実証的検討
非洲热带森林自然管理地方治理结构的实证检验
  • 批准号:
    25300010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
代数解析の特異点理論への応用
代数分析在奇点理论中的应用
  • 批准号:
    16740072
  • 财政年份:
    2004
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
D-加群の解の構造の幾何学的研究
D 模解结构的几何研究
  • 批准号:
    14740098
  • 财政年份:
    2002
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
代数解析とその表現論への応用
代数分析及其在表示论中的应用
  • 批准号:
    11740091
  • 财政年份:
    1999
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
高余次元境界値問題と一第二超局所化
高维边值问题和一秒超定位
  • 批准号:
    08740029
  • 财政年份:
    1996
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
高余次元境界値問題と第二超局所化
高维边值问题和二次超定位
  • 批准号:
    08211247
  • 财政年份:
    1996
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas

相似海外基金

表現論と代数解析学
表示论和代数分析
  • 批准号:
    23K20206
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
全種数グロモフ・ウィッテン理論に現れる代数解析的可積分構造の研究
所有 Gromov-Witten 理论中出现的代数解析可积结构的研究
  • 批准号:
    24K06724
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
多重複素解析学の代数解析的研究
多元分析的代数分析研究
  • 批准号:
    24K06770
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The algebraic analysis of evanescent operators in effective field theory and their asymptotic behavior
有效场论中倏逝算子的代数分析及其渐近行为
  • 批准号:
    22KJ1072
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Algebraic analysis of deformations of non-isolated singularities, computational complex analysis and algorithms
非孤立奇点变形的代数分析、计算复杂性分析和算法
  • 批准号:
    22K03334
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of holonomic constants using algebraic analysis
使用代数分析研究完整常数
  • 批准号:
    22K18668
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
層量子化の幾何学と代数解析学
层量化的几何和代数分析
  • 批准号:
    22K13912
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Coupling理論の代数解析と対角埋め込み法
耦合理论和对角嵌入法的代数分析
  • 批准号:
    21K03265
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
数値代数解析学の開拓 ー量子系偏微分方程式の数値解法の新展開ー
开创性的数值代数分析 - 量子系统偏微分方程数值解的新进展 -
  • 批准号:
    21K18301
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Representation Theory and Algebraic Analysis
表示论和代数分析
  • 批准号:
    20H01795
  • 财政年份:
    2020
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了