非線形現象に関連した非線形偏微分方程式における解の特異性の生成とその性質
与非线性现象有关的非线性偏微分方程解奇点的产生和性质
基本信息
- 批准号:06640205
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
非線形偏微分方程式において、解の特異性が非線形性によってどのような相互作用をするのかということを調べるのは、極めて重要な問題の一つである。それは、解の時間大域的存在や有限時刻での爆発の問題と密接に関連している。空間1次元の特殊な3次の非線形性を持つ非線形シュレデインガー方程式は完全可積分系となり、その解は時刻無限大でも非線形効果が消えず、解は摂動を受けていない自由解には近付かないことが知られている。空間1次元の場合、3次の非線形性は線形散乱理論で云うところの長距離ポテンシャルに相当しており、この事実自体は自然なことである。しかし最近、非線形波動方程式について、従来長距離ポテンシャルに相当すると考えられていた場合でも、ある特別な非線形項に対しては解の特異性が相殺し、時刻無限大で解は自由解に近付くことが分かってきた。非線形シュレデインガー方程式に対しても、特別な非線形項の場合は波動方程式の時と同様、解の特異性が相殺し時刻無限大で非線形効果が消えることが予想される。そこで、今年度は、どのような3次の非線形項に対して、解の特異性が相殺し時刻無限大で解が自由解に近付くかを調べた。また、最近は、単に理論的に解析するだけではなく、数値計算によって偏微分方程式を調べるということも、応用上重要な問題となっている。今回非圧縮性ナヴィエ・ストークス方程式の分岐問題について装置実験を行い、2次分岐の発生やカタストロフ理論におけるカスプ点に相当するものが存在することを捕らえた。このような数値解析が、ナヴィエ・ストークス方程式の解の正則性や特異性の解析に役立つことが期待される。
Non-linear partial differential equations, specificity of solutions, non-linear interactions, and important problems. The existence of time domain, finite time explosion problem and close connection problem are discussed. Special third-order nonlinear equations in space are completely integrable systems, solutions are infinite in time, nonlinear effects are eliminated, solutions are reversed, and solutions are free. Space 1-D occasion, 3-D non-linear anti-linear scattered theory, cloud Nearest, non-linear ratio equation, long-distance, non-linear term, non-linear term. Non-linear equations correspond to each other, especially in the case of non-linear terms, the time and identity of the fluctuation equations, the specificity of the solutions, and the infinity of the time and non-linear effects. This year, the number of non-linear terms is 3, the specificity of the solution is 2, the time is infinite, the solution is free, and the solution is close to the adjustment. The most important problem is the analysis of partial differential equations. This paper presents a non-compressible equation for the bifurcation problem. The device is in operation. The second order bifurcation theory is in operation. The corresponding point exists. The regularity and specificity of the solution of the equation are expected.
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Sato,M.Yamada: "Vertical Strueture of Atmospheric Gravity Waves Revealed by Wavelet Analysis" J.Geophys Res.99. 20623-60631 (1994)
K.Sato,M.Yamada:“小波分析揭示的大气重力波的垂直结构”J.Geophys Res.99。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
片岡清臣: "Microlocal Analysis of Boundary Value Problems with regular singularities" 数理解析研究所講究録「超局所解析と漸近解析」. (1995)
Kiyoomi Kataoka:“具有正则奇点的边值问题的微局部分析”数学科学研究所Kokyuroku“超局部分析和渐近分析”(1995)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Naoyuki Ishimura: "On the simplified magnetic Benard problem" Adv.Math.Sci.Appl.4. 241-247 (1994)
Naoyuki Ishimura:“关于简化的磁贝纳德问题”Adv.Math.Sci.Appl.4。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
堤誉志雄: "The null gauge condition and the one dimensional nonlinear Schrodinger equation with cubic nonlinearity" Indiana Univ.Math.J.43. 241-254 (1994)
Yoshio Tsutsumi:“零规范条件和具有三次非线性的一维非线性薛定谔方程”Indiana Univ.Math.J.43 (1994)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
片山聡一郎: "Global existence of solutions for nonlinear Schrodinger equations in one space dimension" Comm.Part.Diff.Eqns.19. 1971-1997 (1994)
Soichiro Katayama:“一维非线性薛定谔方程解的全局存在性”Comm.Part.Diff.Eqns.1971-1997 (1994)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
堤 誉志雄其他文献
Fluid-structure interaction in environmental and medical applications
环境和医疗应用中的流固耦合
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
N. Kishimoto and Y. Tsutsumi;T. Miyaji and Y. Tsutsumi;T. Miyaji and Y. Tsutsumi;Y. Tsutsumi;Yoshio Tsutsumi;堤 誉志雄;Y. Tsutsumi;Y. Tsutsumi;Hiroshi Suito;Hiroshi Suito - 通讯作者:
Hiroshi Suito
Global attractor for the 3rd order Lugiato-Lefever equation on 1D torus
一维环面上三阶 Lugiato-Lefever 方程的全局吸引子
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
N. Kishimoto and Y. Tsutsumi;T. Miyaji and Y. Tsutsumi;T. Miyaji and Y. Tsutsumi;Y. Tsutsumi;Yoshio Tsutsumi;堤 誉志雄;Y. Tsutsumi - 通讯作者:
Y. Tsutsumi
On spiral solutions to generalized crystalline motion with a rotating tip motion
关于带有旋转尖端运动的广义晶体运动的螺旋解
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
T;Kajiwara and Y. Watatani;堤 誉志雄;Senjo Shimizu;T. Ishiwata - 通讯作者:
T. Ishiwata
Stability of cavity soliton for the Lugiato-Lefever equation
Lugiato-Lefever 方程的空腔孤子稳定性
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Aoki;T.;A. Hachikubo;K. kuchiki;S. Yamaguchi and M. Schneebeli;堤 誉志雄 - 通讯作者:
堤 誉志雄
Parabolic-stochastic regularization for H^1 critical NLS
H^1 临界 NLS 的抛物线随机正则化
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
T;Kajiwara and Y. Watatani;堤 誉志雄 - 通讯作者:
堤 誉志雄
堤 誉志雄的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('堤 誉志雄', 18)}}的其他基金
非線形波動・分散型方程式の幾何学的対称性と弱解の構造
非线性波/色散方程的几何对称性和弱解结构
- 批准号:
23244012 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
確率的効果が加えられた非線形分散型及び波動方程式の解析
具有附加随机效应的非线性色散和波动方程分析
- 批准号:
10F00019 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
確率非線形分散型方程式の可解性と解の漸近挙動
随机非线性分布方程的可解性和解的渐近行为
- 批准号:
19654025 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
数理物理に現れる非線形波動方程式に対する解の大域存在と漸近挙動
数学物理中出现的非线性波动方程解的全局存在性和渐近行为
- 批准号:
06F06037 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
確率非線形分散型方程式に対する解の存在と漸近挙動の解析
随机非线性分布方程解的存在性和渐近行为分析
- 批准号:
16654025 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Exploratory Research
確率的摂動項を持つ非線形分散型方程式の解析
具有随机扰动项的非线性分布方程的分析
- 批准号:
13874021 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Exploratory Research
非線形連立発展方程式系における孤立波解の安定性と不安定性
非线性联立演化方程组孤立波解的稳定性和不稳定性
- 批准号:
98F00029 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
無限自由度の可積分系に関連した非線形波動現象の解析的研究
无限自由度可积系统非线性波现象的分析研究
- 批准号:
06221102 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
無限自由度の可積分系に関連した非線波動現象の解析的研究
无限自由度可积系统非线性波动现象的分析研究
- 批准号:
04245104 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
偏微分方程式論の幾何学及び確率論的問題への応用
偏微分方程理论在几何和随机问题中的应用
- 批准号:
04640212 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Analysis of non-integrable system by the eigenvalue problem of the Liouvillian in classical mechanics
经典力学中刘维尔特征值问题分析不可积系统
- 批准号:
23654136 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
非可積分系の純量子論的効果に関する研究
不可积系统的纯量子效应研究
- 批准号:
09740322 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
複素力学系と非可積分系のトンネル現象の発生機構
复杂动力系统和不可积系统中隧道现象的机理
- 批准号:
09226235 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
半古典論を用いた非可積分系の純量子論的効果の研究
利用半经典理论研究不可积系统中的纯量子效应
- 批准号:
08740331 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
汎関数微分方程式を用いる無限次元非可積分系の研究
使用泛函微分方程研究无限维不可积系统
- 批准号:
05230020 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas














{{item.name}}会员




