無限自由度の可積分系に関連した非線形波動現象の解析的研究

无限自由度可积系统非线性波现象的分析研究

基本信息

  • 批准号:
    06221102
  • 负责人:
  • 金额:
    $ 0.64万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 无数据
  • 项目状态:
    已结题

项目摘要

非線形偏微分方程式において、解の特異性が非線形性によってどのような相互作用をするのかということを調べるのは、極めて重要な問題の一つである。空間1次元の特殊な3次の非線形性を持つ非線形シュレデインガー方程式は完全可積分系となり、その解の性質はよく調べられている。特に、完全可積分系の非線形シュレデインガー方程式に対しては、時刻無限大でも非線形効果が消えず、解は摂動を受けていない自由解には近付かないことが知られている。空間1次元の場合、3次の非線形性は線形散乱理論で云うところの長距離ポテンシャルに相当しており、この事実自体は自然なことである。しかし最近、非線形波動方程式について、従来長距離ポテンシャルに相当すると考えられていた場合でも、ある特別な非線形項に対しては解の特異性が相殺し、時刻無限大で解は自由解に近付くことが分かってきた。非線形シュレデインガー方程式に対しても、特別な非線形項の場合は波動方程式の時と同様、解の特異性が相殺し時刻無限大で非線形効果が消えることが期待される。そこで、今年度は、どのような3次の非線形項に対して、解の特異性が相殺し時刻無限大で解が自由解に近付くかを調べた。その結果、そのような非線形項はシュレデインガー方程式のゲージ不変性と密接な関係があることが分かった。また、熱弾性プレートを伝わる波を記述する方程式の線形化問題について、熱散逸効果による解のエネルギーの時間減衰の速さを調べた。熱弾性波は近年様々な分野で注目を集めており、熱弾性波の非線形問題の数学的解析が切望されている。線形化問題の解析は、それ自身興味深い問題であるばかりでなく、非線形熱弾性波の問題を研究する際に有用である。
The nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation, the solution of the nonlinear partial differential equation. The space one-dimensional special three-dimensional non-linear equation is fully separable and can be used to solve the problem. Special and fully recoverable equations are not available for any time limit, and free solutions are available for short-term payment. The space one-dimensional combination, three-time non-shape-forming scattered clouds, long-distance weather waves, long-distance weather stations are equivalent to each other, and the accidents are self-contained and natural ones. In recent years, non-linear wave equations have been widely used, and in recent years, long-distance wave equations have been widely used in recent years. In recent years, non-linear wave equations have been widely used in recent years. In recent years, non-linear wave equations have been widely used in recent years, and in recent years, long-distance wave equations have been widely used in recent years. Non-linear equations are tested, especially non-linear equations are in the same time, and there is no limit to the time limit of non-linear equations. There are no restrictions on the release of non-financial items and the resolution of special events at all times in this year, this year, and this year. The results of the test show that the non-linear items do not exist in the equation. The equation is closed to each other in a non-linear manner. In this paper, we describe the problem of the transformation of the equation. The result is that we can solve the problem of failure in time and speed. In recent years, we have paid close attention to the mathematical analysis of non-linear problems in recent years. The analysis of formalization problems, the deep taste of problems, and the study of non-formal sexual wave problems are useful.

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
C.M.Elliott,H.Matano and T.Qi: "Zeros of a complex Ginzbarg-Landeu order parameter with applications to superconductivity" European Journal of Applied Mathematics. 5. 431-448 (1994)
C.M.Elliott、H.Matano 和 T.Qi:“复数 Ginzbarg-Landeu 阶参数的零点及其在超导性中的应用”《欧洲应用数学杂志》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
柴田良弘: "On the exponential decay of the energy of a linear thermoelstic plate" Comp.Appl.Math.13. 81-102 (1994)
Yoshihiro Shibata:“线性热弹性板能量的指数衰减”Comp.Appl.Math.13 (1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
堤誉志雄: "The null gauge condition and the one dimensional nonlinear Sehrodinger equation with cubic nonlinearity" Indiana Univ.Math.J.43. 241-254 (1994)
Yoshio Tsutsumi:“零规范条件和具有三次非线性的一维非线性 Sehrodinger 方程”Indiana Univ.Math.J.43 (1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
片山聡一郎: "Global existence of solutions for nonlinear Sehrodinger equations in one space dimension" Comm.Part.Diff.Eqns.19. 1971-1997 (1994)
Soichiro Katayama:“一维非线性薛定谔方程解的全局存在性”Comm.Part.Diff.Eqns.1971-1997 (1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

堤 誉志雄其他文献

Fluid-structure interaction in environmental and medical applications
环境和医疗应用中的流固耦合
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Kishimoto and Y. Tsutsumi;T. Miyaji and Y. Tsutsumi;T. Miyaji and Y. Tsutsumi;Y. Tsutsumi;Yoshio Tsutsumi;堤 誉志雄;Y. Tsutsumi;Y. Tsutsumi;Hiroshi Suito;Hiroshi Suito
  • 通讯作者:
    Hiroshi Suito
Global attractor for the 3rd order Lugiato-Lefever equation on 1D torus
一维环面上三阶 Lugiato-Lefever 方程的全局吸引子
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Kishimoto and Y. Tsutsumi;T. Miyaji and Y. Tsutsumi;T. Miyaji and Y. Tsutsumi;Y. Tsutsumi;Yoshio Tsutsumi;堤 誉志雄;Y. Tsutsumi
  • 通讯作者:
    Y. Tsutsumi
On spiral solutions to generalized crystalline motion with a rotating tip motion
关于带有旋转尖端运动的广义晶体运动的螺旋解
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T;Kajiwara and Y. Watatani;堤 誉志雄;Senjo Shimizu;T. Ishiwata
  • 通讯作者:
    T. Ishiwata
Parabolic-stochastic regularization for H^1 critical NLS
H^1 临界 NLS 的抛物线随机正则化
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T;Kajiwara and Y. Watatani;堤 誉志雄
  • 通讯作者:
    堤 誉志雄
Cayley-Hamilton 型定理と不変式論
凯莱-汉密尔顿型定理和不变量理论
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T;Kajiwara and Y. Watatani;堤 誉志雄;Senjo Shimizu;T. Ishiwata;Mitsuru Sugimoto;T. Kajiwara and Y. Watatani;伊藤稔
  • 通讯作者:
    伊藤稔

堤 誉志雄的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('堤 誉志雄', 18)}}的其他基金

非線形波動・分散型方程式の幾何学的対称性と弱解の構造
非线性波/色散方程的几何对称性和弱解结构
  • 批准号:
    23244012
  • 财政年份:
    2011
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
確率的効果が加えられた非線形分散型及び波動方程式の解析
具有附加随机效应的非线性色散和波动方程分析
  • 批准号:
    10F00019
  • 财政年份:
    2010
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
確率非線形分散型方程式の可解性と解の漸近挙動
随机非线性分布方程的可解性和解的渐近行为
  • 批准号:
    19654025
  • 财政年份:
    2007
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
数理物理に現れる非線形波動方程式に対する解の大域存在と漸近挙動
数学物理中出现的非线性波动方程解的全局存在性和渐近行为
  • 批准号:
    06F06037
  • 财政年份:
    2006
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
確率非線形分散型方程式に対する解の存在と漸近挙動の解析
随机非线性分布方程解的存在性和渐近行为分析
  • 批准号:
    16654025
  • 财政年份:
    2004
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
確率的摂動項を持つ非線形分散型方程式の解析
具有随机扰动项的非线性分布方程的分析
  • 批准号:
    13874021
  • 财政年份:
    2001
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
非線形連立発展方程式系における孤立波解の安定性と不安定性
非线性联立演化方程组孤立波解的稳定性和不稳定性
  • 批准号:
    98F00029
  • 财政年份:
    1998
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形現象に関連した非線形偏微分方程式における解の特異性の生成とその性質
与非线性现象有关的非线性偏微分方程解奇点的产生和性质
  • 批准号:
    06640205
  • 财政年份:
    1994
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
無限自由度の可積分系に関連した非線波動現象の解析的研究
无限自由度可积系统非线性波动现象的分析研究
  • 批准号:
    04245104
  • 财政年份:
    1992
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
偏微分方程式論の幾何学及び確率論的問題への応用
偏微分方程理论在几何和随机问题中的应用
  • 批准号:
    04640212
  • 财政年份:
    1992
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

準弾性散乱・理論を併用したガラス構造中のLiイオンダイナミクスの解明
使用准弹性散射和理论阐明玻璃结构中的锂离子动力学
  • 批准号:
    24K01160
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
量子ウォークのスペクトル流: 散乱理論における新しい不変量の研究
量子行走的谱流:散射理论中新不变量的研究
  • 批准号:
    23KJ1868
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
時間に依存する電場が印加された荷電量子多体系のスペクトル・散乱理論
应用时间相关电场的带电量子多体系统的谱/散射理论
  • 批准号:
    23KJ0791
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
屈折波およびガイド波を伴う波動伝播に対する漸近解析に基づく散乱理論
基于折射波和导波波传播渐近分析的散射理论
  • 批准号:
    22K03390
  • 财政年份:
    2022
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
核子や原子核を入射粒子とした微視的散乱理論の拡張とその応用
以核子和原子核为入射粒子的微观散射理论的推广及其应用
  • 批准号:
    20K03944
  • 财政年份:
    2020
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
対称空間上のシュレディンガー作用素に対する幾何学的散乱理論
对称空间上薛定谔算子的几何散射理论
  • 批准号:
    20K03664
  • 财政年份:
    2020
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
量子場相互作用系のスペクトル解析および散乱理論
量子场相互作用系统的光谱分析和散射理论
  • 批准号:
    12J01671
  • 财政年份:
    2012
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
量子場相互作用系のスペクトル解析および散乱理論
量子场相互作用系统的光谱分析和散射理论
  • 批准号:
    23840029
  • 财政年份:
    2011
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
シュレディンガー方程式のスペクトル・散乱理論
薛定谔方程的谱/散射理论
  • 批准号:
    09J06551
  • 财政年份:
    2009
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
不均質構造における散乱理論に基づく高周波強震動予測法の開発と適用
基于散射理论的异质结构高频强地震动预测方法的开发与应用
  • 批准号:
    07J02043
  • 财政年份:
    2007
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了