偏微分方程式の係数決定逆問題の理論の新展開

偏微分方程系数确定反问题理论的新进展

基本信息

  • 批准号:
    15H02059
  • 负责人:
  • 金额:
    $ 5.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    2015
  • 资助国家:
    日本
  • 起止时间:
    2015-04-01 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

本研究課題では、係数決定逆問題として、次の4つを主な研究対象とした:(A) 楕円型方程式の係数決定逆問題の一意性 (B)リーマン多様体におけるリーマン計量決定逆問題(C) 流体力学におけるさまざまな非定常方程式の係数決定逆問題 (D) 非整数階偏微分方程式の係数決定逆問題.該当する期間に、特に課題(D) に関して研究を集中させた。逆問題の研究対象となる非整数階微分方程式は、汚染物の不均質媒質中の異常拡散だけではなく、さまざまな場合に現れ、パラメータ推定などと関連して、その逆問題解析が重要である。例えば、石油探査や地熱発電の効率的な運用のためには、亀裂などが想定される地下構造におけるガスや熱の拡散の精密なシミュレーションが重要である。亀裂などの複雑な地下構造のために、熱拡散は古典的な移流項が付いた熱伝導方程式では適切なモデル方程式とならない。本研究の課題(D)を遂行するにあたり、諸科学分野への応用も視野に入れて、地熱発電の冷却水の適切な放出のための地下の熱拡散現象を研究しているスタンフォード大学のポスドク研究員の鈴木杏奈氏を東京大学大学院数理科学研究科に招へいして、共同研究を行った。その成果は "Initial/boundary value problem and some properties for fractional heat transfer equation" として論文にまとめているところである。
The main objects of this study are: (A) Universality of coefficient determination inverse problem of differential equations (B) Multiple-body problem of metric determination inverse problem (C) Coefficient determination inverse problem of unsteady equations in fluid mechanics (D) Coefficient determination inverse problem of partial differential equations of non-integer order. This period, special topics (D) related to research focus The study of inverse problems is based on the analysis of non-integer differential equations, anomalous dispersion of pollutants in heterogeneous media, and the analysis of inverse problems. For example, petroleum exploration and the application of geothermal power generation efficiency are very important for the determination of underground structure, heat dissipation and precision. The heat transfer equation is the classical equation for heat transfer. Project (D) of this study was carried out in the field of application of various scientific fields. Research on the appropriate emission of geothermal power and the phenomenon of underground heat dissipation. Research Fellow of the University of Tokyo, Nakanishi Suzuki. Joint research. "Initial/boundary value problem and some properties for fractional heat transfer equation"

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

山本 昌宏其他文献

基礎と応用 微分積分2
微积分基础与应用 2
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G.Nakamura;G.Uhlmann;J.N.Wang;山本 昌宏
  • 通讯作者:
    山本 昌宏
On an inverse problem related to laser material treatments
关于激光材料处理的反问题
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山本 昌宏;H" omberg;D
  • 通讯作者:
    D
A Conditional Stability Estimate for an Inverse Neumann Boundary Problem (解析接続の応用)
逆诺伊曼边界问题的条件稳定性估计(解析连接的应用)
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    韓 耀宗;山本 昌宏
  • 通讯作者:
    山本 昌宏
ERROR ESTIMATES OF THE REAL INVERSION FORMULAS OF THE LAPLACE TRANSFORM : abstract (Reproducing Kernels and their Applications)
拉普拉斯变换的实数反演公式的误差估计:摘要(再现内核及其应用)
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    天野 一男;斎藤 三郎;山本 昌宏
  • 通讯作者:
    山本 昌宏
多倍長計算の逆問題、非適切問題への適用
多精度计算在反问题和不恰当问题中的应用
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山本 昌宏;Wan;X.Q.;Wang;Y.B.;Osamu Saeki;藤原 宏志
  • 通讯作者:
    藤原 宏志

山本 昌宏的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('山本 昌宏', 18)}}的其他基金

汚染物質の拡散の推定と予測のための逆問題の数学手法の開拓
开发反问题的数学方法来估计和预测污染物扩散
  • 批准号:
    21K18142
  • 财政年份:
    2021
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
非整数階偏微分方程式に対する逆問題と関連課題
分数阶偏微分方程的反问题及相关问题
  • 批准号:
    20F20319
  • 财政年份:
    2020
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mathematical analysis of inverse problems and modelling for complex fluids and diffusion in heterogeneous media
逆问题的数学分析以及复杂流体和非均匀介质中扩散的建模
  • 批准号:
    20H00117
  • 财政年份:
    2020
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical analysis and applications of crystal growth and anomalous diffusion
晶体生长和反常扩散的数学分析及应用
  • 批准号:
    16F16319
  • 财政年份:
    2016
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
再生核ヒルベルト空間による逆問題数値解析手法の開発
利用再生核希尔伯特空间的反问题数值分析方法的发展
  • 批准号:
    20654011
  • 财政年份:
    2008
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
双曲型方程式系に対する逆問題の数学解析
双曲方程组反问题的数学分析
  • 批准号:
    06F06323
  • 财政年份:
    2006
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
産業数学における逆問題の高速数値解法の理論と実用化
工业数学反问题高速数值求解的理论与实际应用
  • 批准号:
    17654019
  • 财政年份:
    2005
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
マクスウェルの方程式ならびにラメの方程式に対する逆問題の解析手法の開発
麦克斯韦方程组和拉梅方程组反问题分析方法的发展
  • 批准号:
    15654015
  • 财政年份:
    2003
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
応用逆問題の研究動向の調査と研究体制の整備
应用反问题研究动态调查及研究体系建设
  • 批准号:
    14604005
  • 财政年份:
    2002
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
波動方程式の外力項の内部観測による決定問題の数理解析的研究
基于波动方程外力项内观的决策问题数学分析研究
  • 批准号:
    07740142
  • 财政年份:
    1995
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

流体方程式の弱解の非一意性と微視的構造の数理解析
流体方程弱解的非唯一性与微观结构的数学分析
  • 批准号:
    22KJ0785
  • 财政年份:
    2023
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
領域上の特異な拡散過程に対する一意性と離散近似
区域上奇异扩散过程的唯一性和离散近似
  • 批准号:
    22K13926
  • 财政年份:
    2022
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
項書き換えシステムの解の一意性を保証する性質に関する研究
保证术语重写系统解唯一性的性质研究
  • 批准号:
    21K11750
  • 财政年份:
    2021
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Environmental Thought in the Anthropocene: Critical Examination of the Post-Cartesian Monism
人类世的环境思想:对后笛卡尔一元论的批判性审视
  • 批准号:
    18K12188
  • 财政年份:
    2018
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
定曲率空間における非線形楕円型方程式の正値球対称解の一意性および分岐構造の研究
常曲率空间非线性椭圆方程正值球对称解的唯一性及分岔结构研究
  • 批准号:
    18K03387
  • 财政年份:
    2018
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Gnosis and Monism -- Modern Art Movement in Germany
灵知与一元论——德国现代艺术运动
  • 批准号:
    18K00139
  • 财政年份:
    2018
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Actuality of Russell's Neutral Monism
罗素中立一元论的现实
  • 批准号:
    17K02190
  • 财政年份:
    2017
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線型偏微分方程式の初期値問題における解の存在と一意性及び解の解析性
非线性偏微分方程初值问题解的存在唯一性及解的可解析性
  • 批准号:
    14J04893
  • 财政年份:
    2014
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
山辺計量の一意性に関する研究
Yamabe度量的唯一性研究
  • 批准号:
    13J05169
  • 财政年份:
    2013
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
3次元外部領域における定常Navier-Stokes方程式の解の一意性について
论三维外域平稳纳维-斯托克斯方程解的唯一性
  • 批准号:
    13J02702
  • 财政年份:
    2013
  • 资助金额:
    $ 5.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了