Mathematical analysis and applications of crystal growth and anomalous diffusion

晶体生长和反常扩散的数学分析及应用

基本信息

  • 批准号:
    16F16319
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2016
  • 资助国家:
    日本
  • 起止时间:
    2016-11-07 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

今年度は、非整数階偏微分方程式の順問題および逆問題に対する数学解析を継続し、結晶成長と異常拡散の交差点について研究した。具体的に、異常拡散を表す非整数階偏微分方程式の初期値・境界値問題に関して、次の研究を行った。1. 順問題:時間微分階数α∈(0,1)かつ解がスカラー値の場合は多くな先行研究があったが、下記の拡張に対する考察を展開した。(a) α∈(1,2)区間に属す場合に対して、坂本-山本による結果を改善し、解の適切性および解析性を証明した。(b) 非整数階反応拡散系を考えるため、ベクトル値の解が満たすカップリング・システムを考え、解の適切性・解析性・漸近挙動を調べた。2. α∈(0,1)のときの逆問題:(a) 源泉項F(x,t)=f(x)R(x,t)とし、空間成分f(x)を最終時刻の観測データから決定する問題については、解析Fredholm理論によって一意性を示した。(b) 上記と同じ問題で、部分内部領域の観測データによる再構成については、離散化された最適化問題の解の存在性・安定性・収束性を示した。(c) 源泉項および係数を決定する問題に関しては、近年の成果をまとめてレビュー論文を出版した。3. α∈(1,2]のときの逆問題:順問題の結果を踏まえ、以下の逆問題を考察した。(a) 源泉項が平行移動する場合、ソースの形状を境界全体の近傍の観測で決定する問題について、一意性を証明した。(b) 源泉項がある軌道に沿って移動する場合、有限個の点における観測で軌道を決定する問題について、条件付き安定性を示した。(c) α∈(1,2)の場合、部分境界における一回の観測によって複数の係数を決定する問題については、特殊な境界条件を課すことによって一意性を証明した。
This year, the mathematical analysis, crystal growth and anomalous dispersion of non-integer partial differential equations are studied. The initial value and boundary value problems of non-integer partial differential equations are studied in detail. 1. The order of time differential α∈(0,1) (a)α∈(1,2) interval belongs to the case, Sakamoto-Yamamoto results improve, solution relevance and analytical proof (b)Non-integer order inverse dispersion systems are investigated in terms of solution appropriateness, resolution and asymptotic behavior. 2. The inverse problem of α∈(0,1):(a) The source term F(x,t)=f(x)R(x,t), the spatial component f(x), and the final time of measurement are determined. (b)The existence, stability, and convergence of solutions to discretization optimization problems are demonstrated in the above discussion. (c)The source of the problem is the coefficient. The results of the study in recent years are published. 3.α∈(1,2) and its inverse problem: the result of the forward problem is discussed, and the following inverse problem is investigated. (a)When the source term moves in parallel, the shape of the problem is determined by the measurement of the whole boundary, and the consistency is proved. (b)When the source term moves along the orbit, a finite number of points are measured and the orbit is determined. (c)α∈(1,2), partial boundary conditions, one-loop measurement, complex coefficient determination, problem, special boundary conditions, one-meaning proof

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new unique continuation property for anisotropic elasticity systems in two dimensions
二维各向异性弹性系统的一种新的独特连续性质
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Liu;W. Rundell and M. Yamamoto;Liu Yikan;Liu Yikan;Liu Yikan;Yikan Liu;Yikan Liu;Yikan Liu;Yikan Liu
  • 通讯作者:
    Yikan Liu
Texas A&M University(米国)
德克萨斯农工大学(美国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A new unique continuation property for two-dimensional anisotropic elasticity systems
二维各向异性弹性系统的一种新的独特连续性质
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Liu;W. Rundell and M. Yamamoto;Liu Yikan;Liu Yikan
  • 通讯作者:
    Liu Yikan
Theoretical stability in coefficient inverse problems for general hyperbolic equations with numerical reconstruction
  • DOI:
    10.1088/1361-6420/aaa4a0
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Jietai Yu;Yikan Liu;Masahiro Yamamoto
  • 通讯作者:
    Jietai Yu;Yikan Liu;Masahiro Yamamoto
Strong maximum principle for fractional diffusion equations and an application to an inverse source problem
  • DOI:
    10.1515/fca-2016-0048
  • 发表时间:
    2015-07
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Yikan Liu;W. Rundell;Masahiro Yamamoto
  • 通讯作者:
    Yikan Liu;W. Rundell;Masahiro Yamamoto
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

山本 昌宏其他文献

基礎と応用 微分積分2
微积分基础与应用 2
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G.Nakamura;G.Uhlmann;J.N.Wang;山本 昌宏
  • 通讯作者:
    山本 昌宏
On an inverse problem related to laser material treatments
关于激光材料处理的反问题
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山本 昌宏;H" omberg;D
  • 通讯作者:
    D
A Conditional Stability Estimate for an Inverse Neumann Boundary Problem (解析接続の応用)
逆诺伊曼边界问题的条件稳定性估计(解析连接的应用)
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    韓 耀宗;山本 昌宏
  • 通讯作者:
    山本 昌宏
ERROR ESTIMATES OF THE REAL INVERSION FORMULAS OF THE LAPLACE TRANSFORM : abstract (Reproducing Kernels and their Applications)
拉普拉斯变换的实数反演公式的误差估计:摘要(再现内核及其应用)
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    天野 一男;斎藤 三郎;山本 昌宏
  • 通讯作者:
    山本 昌宏
多倍長計算の逆問題、非適切問題への適用
多精度计算在反问题和不恰当问题中的应用
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山本 昌宏;Wan;X.Q.;Wang;Y.B.;Osamu Saeki;藤原 宏志
  • 通讯作者:
    藤原 宏志

山本 昌宏的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('山本 昌宏', 18)}}的其他基金

汚染物質の拡散の推定と予測のための逆問題の数学手法の開拓
开发反问题的数学方法来估计和预测污染物扩散
  • 批准号:
    21K18142
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
非整数階偏微分方程式に対する逆問題と関連課題
分数阶偏微分方程的反问题及相关问题
  • 批准号:
    20F20319
  • 财政年份:
    2020
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mathematical analysis of inverse problems and modelling for complex fluids and diffusion in heterogeneous media
逆问题的数学分析以及复杂流体和非均匀介质中扩散的建模
  • 批准号:
    20H00117
  • 财政年份:
    2020
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
偏微分方程式の係数決定逆問題の理論の新展開
偏微分方程系数确定反问题理论的新进展
  • 批准号:
    15H02059
  • 财政年份:
    2015
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
再生核ヒルベルト空間による逆問題数値解析手法の開発
利用再生核希尔伯特空间的反问题数值分析方法的发展
  • 批准号:
    20654011
  • 财政年份:
    2008
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
双曲型方程式系に対する逆問題の数学解析
双曲方程组反问题的数学分析
  • 批准号:
    06F06323
  • 财政年份:
    2006
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
産業数学における逆問題の高速数値解法の理論と実用化
工业数学反问题高速数值求解的理论与实际应用
  • 批准号:
    17654019
  • 财政年份:
    2005
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
マクスウェルの方程式ならびにラメの方程式に対する逆問題の解析手法の開発
麦克斯韦方程组和拉梅方程组反问题分析方法的发展
  • 批准号:
    15654015
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
応用逆問題の研究動向の調査と研究体制の整備
应用反问题研究动态调查及研究体系建设
  • 批准号:
    14604005
  • 财政年份:
    2002
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
波動方程式の外力項の内部観測による決定問題の数理解析的研究
基于波动方程外力项内观的决策问题数学分析研究
  • 批准号:
    07740142
  • 财政年份:
    1995
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

消散項を含む双曲型方程式の平滑化効果とその漸近解析への応用
含耗散项双曲方程的平滑效应及其在渐近分析中的应用
  • 批准号:
    24K06822
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
強双曲型方程式において弱零条件の果たす役割の解明
阐明强双曲方程中弱零条件所起的作用
  • 批准号:
    19H01795
  • 财政年份:
    2019
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on the well-posedness of hyperbolic equation with memory
带记忆的双曲方程适定性研究
  • 批准号:
    24540158
  • 财政年份:
    2012
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
双曲型方程式系に対する逆問題の数学解析
双曲方程组反问题的数学分析
  • 批准号:
    06F06323
  • 财政年份:
    2006
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
双曲型方程式の解の漸近安定性と非線形発展方程式への応用
双曲方程解的渐近稳定性及其在非线性演化方程中的应用
  • 批准号:
    16740098
  • 财政年份:
    2004
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
双曲型方程式の幾何学的対称性と非線型方程式の時間大域解の存在及び散乱問題の研究
研究双曲方程的几何对称性、非线性方程的时间全局解的存在性以及散射问题
  • 批准号:
    15740092
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
双曲型方程式に支配される自由境界の挙動について
关于双曲方程控制的自由边界的行为
  • 批准号:
    14740090
  • 财政年份:
    2002
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
高階の非線形双曲型方程式の解のライフスパンに関する研究
高阶非线性双曲方程解的寿命研究
  • 批准号:
    13740108
  • 财政年份:
    2001
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
2階非線形双曲型方程式及び保存則系に対する大域理論
二阶非线性双曲方程和守恒定律系统的全局理论
  • 批准号:
    98F00353
  • 财政年份:
    1999
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線型双曲型方程式に対する特異性の生成、及び伝播に関する大域的理論
非线性双曲方程奇点生成和传播的全局理论
  • 批准号:
    97F00314
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了