作用素部分・環の有限離散構造

操作部件/环的有限离散结构

基本信息

  • 批准号:
    05230001
  • 负责人:
  • 金额:
    $ 0.32万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 无数据
  • 项目状态:
    已结题

项目摘要

II、型因子環の部分因子環の構造についてはJones index,principal greph,wnnechon 等を用いて色々調べられている。しかし1つのII、型因子環に含まれる多くの部分因子環達相互の位置関係についてはほとんど調べられてこなかった。本研究では,ここに焦点をあて,2こ以上の互いに包合関係をもつとは限らない部分因子環達の間の関係を束論的な立場から調べてみた。部分因子環の理論は体論におけるがロア理論との類似がある。そこではガロア拡大の中間体のつくる束とがロア群の部分群のつくる束が反同型になっている。特にこのことに注目してII、型因子環Mとその部分因子環NCMに対して,NとMの間にある中間部分因子環全体Lat(NCM)を考える、もしN' 〓=CならばこのLat(NCM)はK_1VK_2=(K_1VK_2)",K_1〓K_2=K_1〓K_2という2つの演算で束になる。ここで得た最高の面白い結果はここに有限離散構造がちゃんとひそんでいたということである。もっと正確に述べると,部分因子環NCMがN'〓M=Cという条件とJones index (M:N)が有限であるという条件を仮定するならば,中間部分因子環のつくる束Lat(NCM)は有限束になる。特にJones index (M:N)=4となるhyper fi〓teな場合には中間因子環の形を完全に決定した。またIII型因子環の時についても中間因子環の束の構造を調べ,m〓dular自己同型をとってII型にした場合と比較した。またAut(M,N)の部分群による接合積で束構造が変化する例も構成した。
II. The structure of type factor ring and partial factor ring is composed of Jones index,principal greph,wnnechon, etc. The type factor ring contains many partial factors, and the position relationship between them is discussed. In this study, we focus on the relationship between two or more factors, including the relationship between two or more factors. The theory of partial factor ring is similar to that of body theory. The intermediate is a part of the group. In particular, the type factor ring M and the partial factor ring NCM are related to each other, and the intermediate partial factor ring Lat (NCM) is related to each other. The result is finite discrete structure. The partial factor ring NCM is N'M=C and the Jones index (M:N) is finite and the intermediate partial factor ring is finite. In particular, Jones index (M:N)=4. The shape of the intermediate factor ring is completely determined. Type III factor rings are the same type as type II factor rings, and the structure of intermediate factor rings is different. The partial group of Aut(M,N) is composed of a bundle structure.

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Watatani: "Lattice Structure of Intermediale Subfactor" Quantum and Non-Commutative Analysis. 331-333 (1993)
Y.Watatani:“中间子因子的晶格结构”量子和非交换分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Sano and Y.Watatani: "Angles between two subfactors" J.Operator Theory. to appear.
T.Sano 和 Y.Watatani:“两个子因素之间的角度”J.Operator Theory。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.-S.Saito and Y.Watatani: "Subdiaguval algebras for sabfoctors" J.Operator Theory. to appear.
K.-S.Saito 和 Y.Watatani:“sabfoctors 的次对角代数”J.Operator Theory。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

綿谷 安男其他文献

Association scheme, Terwilliger algebras and Takesaki duality
关联方案、Terwilliger 代数和 Takesaki 对偶性
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    綿谷 安男
  • 通讯作者:
    綿谷 安男
Hitbert representaion of quirta and extended Dyakin diagrame
quirta 的 Hitbert 表示和扩展 Dyakin 图
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Kajiwara;Y.Watatani;綿谷 安男;綿谷 安男
  • 通讯作者:
    綿谷 安男
Complex dynamical systems and associated C^*-algebras
复杂动力系统和相关的 C^*-代数
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Kajiwara;Y.Watatani;綿谷 安男
  • 通讯作者:
    綿谷 安男

綿谷 安男的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('綿谷 安男', 18)}}的其他基金

Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
  • 批准号:
    23K03151
  • 财政年份:
    2023
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ヒルベルト空間の部分空間の配置とディンキン図形のヒルベルト表現の研究
希尔伯特空间的子空间排列及丁金形的希尔伯特表示研究
  • 批准号:
    18654028
  • 财政年份:
    2006
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
ヒルベルト空間の部分空間の配置の研究
希尔伯特空间子空间排列的研究
  • 批准号:
    13874024
  • 财政年份:
    2001
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
有限幾何の量子化
有限几何的量化
  • 批准号:
    10874006
  • 财政年份:
    1998
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
非可換有限幾何
非交换有限几何
  • 批准号:
    09874033
  • 财政年份:
    1997
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
C^*-部分環における指数理論の発展
C^*-子环中指数理论的发展
  • 批准号:
    07210264
  • 财政年份:
    1995
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
部分因子環に対する組合せの構造
子因子环的组合结构
  • 批准号:
    07640224
  • 财政年份:
    1995
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
作用素環の部分環の構造と角度
算子代数子环的结构和角
  • 批准号:
    04640112
  • 财政年份:
    1992
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
C^*一環の指数理論
索引理论作为 C^* 的一部分
  • 批准号:
    01740092
  • 财政年份:
    1989
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

Quadratic fusion categories: A frontier in subfactor theory
二次融合类别:子因子理论的前沿
  • 批准号:
    DP170103265
  • 财政年份:
    2017
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Discovery Projects
Subfactor Theory in Mathematics and Physics Conference 2014
2014年数学物理会议子因子理论
  • 批准号:
    1400275
  • 财政年份:
    2014
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Standard Grant
The Haagerup subfactor, K-theory and conformal field theory
Haagerup 子因子、K 理论和共形场论
  • 批准号:
    EP/J003352/1
  • 财政年份:
    2012
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Research Grant
On the research of a geometric realization of subfactors and its applications
子因子的几何实现及其应用研究
  • 批准号:
    22540234
  • 财政年份:
    2010
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on topological quantum field theories by operator algebras
用算子代数研究拓扑量子场论
  • 批准号:
    18740037
  • 财政年份:
    2006
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Operator algebras and mathematical physics
算子代数和数学物理
  • 批准号:
    16340045
  • 财政年份:
    2004
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
作用素環論の低次元トポロジーへの応用
算子代数理论在低维拓扑中的应用
  • 批准号:
    15740043
  • 财政年份:
    2003
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of recent topics on operator algebras
算子代数近期课题研究
  • 批准号:
    14340056
  • 财政年份:
    2002
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Classification of coquasi-Hopf algebras by tensor equivalence and constructions of new braidings
通过张量等价对 coquasi-Hopf 代数进行分类和新编织的构造
  • 批准号:
    14540007
  • 财政年份:
    2002
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
パラグループ理論と量子群、位相的場の理論、共形場理論等との関わりの研究
研究副群论与量子群、拓扑场论、共形场论等的关系。
  • 批准号:
    13740103
  • 财政年份:
    2001
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了