多重ポテンシャル井戸をもつ変分問題と関連する時間発展問題の研究
多势井变分问题及相关时间演化问题研究
基本信息
- 批准号:02F02035
- 负责人:
- 金额:$ 0.26万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
多重ポテンシャル井戸をもつ変分問題とそれに関連する熱型、波動型偏微分方程式の解の挙動を探ることを目標に研究を行ってきた。特に3重のポテンシャル井戸を持つ問題については、均等に与えられた3重井戸の問題(均等に井戸を与えるために例えばn重井戸ではn-1次元ベクトル値関数を未知関数とする)を取り扱っている。未知関数が、各ポテンシャル井戸の値を取るとエネルギーが小さくなり、多相が共存する場合では、その境界で遷移層(極限では界面)を生ずる現象に相当する。遷移層または界面の運動法則を規定することが第一の目標であった。我々の結果は「3重のミーティングポイントの安定性」、「6重ポイントの不安定性」を数値的に確かめたこと、また大域的なハニカム構造の安定存在も確かめられた。さらに、ハニカム構造の一部破壊による不安定化と構造の崩壊現象のルールも数値的に得られた。結晶成長現象のファセットの動きを記述出来ているように見える。これらの数学的構造をはっきりさせることは課題として残ってしまった。しかし、新たに、ベクトル値のBMOアルゴリズムが、場合によっては多重ポテンシャルの問題と非常ににていることを見いだした。将来の課題と考える。一般的には、多重井戸を使わずにジャンクションポイントの角度を与えて、平均曲率流へ持ち込むやり方もあるが、我々の方法はジャンクションがほどける現象も自動的に追跡でき、ここに人工的な仮定を置かなくて良い点が特徴である。さらに特異点の挙動に関連する常微分方程式を取り扱い、定性的に特異点の形状をうまく調べている。
The purpose of this research is to explore the fluctuations in the solutions of thermal and ratio-type partial differential equations related to multiple complex differential problems. The problem of triple well is the problem of triple well, equal well and unknown well (equal well and unknown well). In the case of unknown correlation, multi-phase coexistence, multi-phase migration and boundary migration, the phenomenon of boundary migration occurs. The rules of motion of the migration layer define the first objective. Our results show that the stability of three-layer structure and six-layer structure is very stable. A part of the structural collapse is unstable and the structural collapse phenomenon is obtained. The crystal growth phenomenon is described in detail. The structure of mathematics is not the same as the structure of mathematics. For example, if you want to find out more, you can find out more about BMO. Future issues and research. General, multiple wells, such as the angle of rotation, the average curvature of the flow, the method of rotation, the phenomenon of automatic tracking, the artificial positioning, the characteristics of good points. The ordinary differential equations for the dynamic relations of singular points are selected from the equation, and the shape of singular points is determined qualitatively.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
小俣 正朗其他文献
A free boundary problem for one dimensional hyperbolic equation(Variational Problems and Related Topics)
一维双曲方程的自由边界问题(变分问题及相关主题)
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
菊地 光嗣;小俣 正朗 - 通讯作者:
小俣 正朗
小俣 正朗的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('小俣 正朗', 18)}}的其他基金
Kinetics on surface tension with junction
连接处表面张力的动力学
- 批准号:
21K03349 - 财政年份:2021
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
衝突・剥離現象の数理解析と医学への応用
碰撞/分离现象的数学分析及医学应用
- 批准号:
21654013 - 财政年份:2009
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
多重ポテンシャル井戸をもつ変分問題と関連する時間発展問題の研究
多势井变分问题及相关时间演化问题研究
- 批准号:
02F00035 - 财政年份:2002
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for JSPS Fellows
数理ファイナンスに現れる自由境界問題の数理解析
数学金融中出现的自由边界问题的数学分析
- 批准号:
13874022 - 财政年份:2001
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Exploratory Research
偏微分方程式に現れる自由境界問題の数理解析
偏微分方程中自由边界问题的数学分析
- 批准号:
07640187 - 财政年份:1995
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
離散的勾配流の数値解析への応用
在离散梯度流数值分析中的应用
- 批准号:
06740089 - 财政年份:1994
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
楕円型及び放物型偏微分方程式の自由境界問題
椭圆和抛物型偏微分方程的自由边界问题
- 批准号:
04740062 - 财政年份:1992
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
非線形偏微分方程式における解の臨界正則性と特異性
非线性偏微分方程解的临界正则性和奇异性
- 批准号:
23K20803 - 财政年份:2024
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
楕円関数計算を併用した非線形偏微分方程式の分岐・安定性解析
使用椭圆函数计算的非线性偏微分方程的分岔和稳定性分析
- 批准号:
24K06814 - 财政年份:2024
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
変分的手法の発展と非線形偏微分方程式や凸幾何学への応用
变分法的发展及其在非线性偏微分方程和凸几何中的应用
- 批准号:
23K03189 - 财政年份:2023
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
地球流体力学に現れる非線形偏微分方程式系の数理解析
地流体动力学中非线性偏微分方程组的数学分析
- 批准号:
22KJ2378 - 财政年份:2023
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for JSPS Fellows
変分問題、最適化問題と非線形偏微分方程式の総合的研究
变分问题、优化问题和非线性偏微分方程的综合研究
- 批准号:
22K03389 - 财政年份:2022
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
完全非線形偏微分方程式とその自由境界問題に対する理論と応用
完全非线性偏微分方程及其自由边界问题的理论与应用
- 批准号:
22K13944 - 财政年份:2022
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
高周波漸近解析に基づいた非線形偏微分方程式の研究
基于高频渐近分析的非线性偏微分方程研究
- 批准号:
21K03314 - 财政年份:2021
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
特異性を伴う非線形偏微分方程式の解構造に着目した数学解析
关注奇异性非线性偏微分方程解结构的数学分析
- 批准号:
21K03312 - 财政年份:2021
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
非線形偏微分方程式における解の臨界正則性と特異性
非线性偏微分方程解的临界正则性和奇异性
- 批准号:
21H00991 - 财政年份:2021
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
流体を記述する非線形偏微分方程式の球対称問題の数学解析
描述流体的非线性偏微分方程球对称问题的数学分析
- 批准号:
21K03306 - 财政年份:2021
- 资助金额:
$ 0.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)