ジーゲル保型形式と幾何学
西格尔模块化形式和几何
基本信息
- 批准号:61540052
- 负责人:
- 金额:$ 0.51万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1986
- 资助国家:日本
- 起止时间:1986 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1)任意の次数nに対してコンパクトシンプレクティック群Sp(n)の保型形式の一部は、一変数保型形式からの「持ち上げ」であることを示し、両者の間のL函数の関係を求めた。手法はWeil表現とアデール群上の算術によっている。従来、dual reductive pair と呼ばれる代数群の組については、 R.HoweによってWeil表現による持ち上げの一般原理が記述されていたが、我々の2つの代数群の組はdual reductive pairではないという点で、「持ち上げ」の理論の枠を広げ新しい問題を堤出したと言えるであろう。(以上は伊原康隆(東大理)との共同研究)(2)Sp(n、1R)上のジーゲル保型形式とSp(n)上の保型形式の次元比較を行った。両者の次元公式は、セルバーグ跡公式によれば、離散群の元の共役数に関する適当なデータの和で書かれるはずだが、Sp(n、1R)においては、Sp(n)では存在しない「中心的巾単元の寄与」がありうる。ラニングランズのstable conjugacy class に関する哲学によれば、このような項は本来消滅するはずである。一方、古典的な意味で美しい保型形式の対応関係をを得るには、対象とする離散群をminimal parohoric subgroup に取るべきであることが以前の研究でわかっていた。この時に保型形式をnew formとold formに分離し、上のような寄与は全体では本来消滅しないがnew formに制限すれば消滅することを示した。証明は寄与の収束と寄与の消滅の2段階にわかれる。前者は新谷による擬均質ベクトル空間のゼータ函数の理論により後者はBruhot-Tits 理論等の群論による。この結果の系として離散群に適当なレベルをつけ跡公式についての標準的予想を仮定すればSp(n、1R)とSp(n)の保型形式の次元の一致が示される。構造的証明であるので一般の代数群への拡張が期待される。(1)(2)について名大と京大のシンポジウムにて発表した。英文論文は(1)は Math.Ann.に受理され(2)は準備中である。
(1)The relation between L function of Sp(n) and Sp(n) is solved. Method Weil performance on the arithmetic of the group A description of the general principles of algebraic groups with dual reductive pairs is given in this paper. (2) A dimensional comparison of the preserving form on Sp(n, 1R). The dimensional formula of the discrete group is related to the number of elements in the discrete group. The sum of the elements in the discrete group is related to the number of elements in the discrete group. The sum of the elements in the discrete group is related to the number of elements in the discrete group. The sum of the elements in the discrete group is related to the number of elements in the discrete group. The sum of the elements in the discrete group is related to the number of elements in the discrete group. The stable conjugation class is related to the philosophy of the class. A square, classical meaning of the United States to preserve the form of the relationship between the two, the image of the discrete group to take the minimum parabolic subgroup, the previous research. The new form and the old form are separated, the upper form and the lower form are eliminated. It is proved that there are two stages of transmission and elimination. The former is the theory of quasi-homogeneous space functions, while the latter is the group theory of Bruhot-Tits. The result of this is that the discretization group is properly defined by the standard prediction of Sp(n, 1R) and Sp(n), and the dimensional consistency of the form-preserving form is shown. The proof of construction (1)(2) The name of the company is large. English paper (1) Math.Ann.(2)
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tomoyoshi,Ibukiyama: Compoitio Mathematica. 57. 127-152 (1986)
伊吹山智吉:数学计算。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
伊吹山 知義其他文献
Quadratic mappings over(GO(p, q) , R^p+q) and functional Equations
(GO(p, q) , R^p q) 和函数方程的二次映射
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;木村 達雄;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato - 通讯作者:
Fumihiro Sato
局所密度の一次独立性とその保型形式の数論への応用
局域密度线性无关及其自守形式在数论中的应用
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;木村 達雄;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;広中 由美子 - 通讯作者:
広中 由美子
On the functional equations of shpherical functions on certain spherical homogeneous space
关于某球齐次空间上球函数的泛函方程
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;木村 達雄;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;広中 由美子;Yumiko Hironaka;佐藤 文広;Fumihiro Sato;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;広中 由美子;Yumiko Hironaka;広中 由美子;Yumiko Hironaka;佐藤 文広;Fumihiro Sato;広中 由美子;Yumiko Hironaka;広中 由美子;Yumiko Hironaka;佐藤 文広;Fumihiro Sato;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;Yumiko Hironaka;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;Yumiko Hironaka - 通讯作者:
Yumiko Hironaka
二次写像による関数等式の遺伝と非概均質的関数等式
通过二次映射和非近似齐次函数方程继承函数方程
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広 - 通讯作者:
佐藤 文広
伊吹山 知義的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('伊吹山 知義', 18)}}的其他基金
Algebraic study of L functions of modular forms of several variables and differential operators
多变量模形式的L函数和微分算子的代数研究
- 批准号:
23K03031 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Siegel modular forms and algebraic modular forms
西格尔模形式和代数模形式
- 批准号:
19K03424 - 财政年份:2019
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
中間ウェイトのジーゲル保型形式の研究
中等重量西格尔固定形式的研究
- 批准号:
18654003 - 财政年份:2006
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Exploratory Research
ベクトル値ジーゲル保型形式のなすテンソル環の研究
向量值Siegel模形式形成的张量环的研究
- 批准号:
14654007 - 财政年份:2002
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Exploratory Research
Koecher Maass級数と保型形式のリフティング
Koecher Maass 级数和自守形式的提升
- 批准号:
11874005 - 财政年份:1999
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Exploratory Research
一般ジーゲル公式とゼータ関数
一般西格尔公式和 zeta 函数
- 批准号:
09874007 - 财政年份:1997
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Exploratory Research
Maass Koecher Seriesの研究
Maass Koecher级数研究
- 批准号:
08874001 - 财政年份:1996
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Exploratory Research
ジョルダン代数のゼ-ヌ関数と保型形式の次元
Jordan 代数的 Zene 函数和自守形式的维数
- 批准号:
07210252 - 财政年份:1995
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
保型形式とオイラー積の和としてのゼータ関数
Zeta 函数为自守形式与欧拉积之和
- 批准号:
07804002 - 财政年份:1995
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
保型形式の次元公式
自守形式的维数公式
- 批准号:
06640042 - 财政年份:1994
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Beyond Endoscopy and the stable trace formula
超越内窥镜检查和稳定的痕量公式
- 批准号:
RGPIN-2020-04547 - 财政年份:2022
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2021
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
Beyond Endoscopy and the stable trace formula
超越内窥镜检查和稳定的痕量公式
- 批准号:
RGPIN-2020-04547 - 财政年份:2021
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
The Trace Formula Method and the Arithmetic and Geometry of Modular Varieties in the Langlands Program
朗兰兹纲领中的迹公式法与模簇的算术和几何
- 批准号:
2132670 - 财政年份:2020
- 资助金额:
$ 0.51万 - 项目类别:
Standard Grant
擬尖点形式を用いた跡公式の分割と保型形式及びゼータ関数の研究
拟尖形形式的迹公式划分及自同构形式和zeta函数的研究
- 批准号:
20K03515 - 财政年份:2020
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cohomology of Arithmetic Groups and the Stable Trace Formula
算术群的上同调与稳定迹公式
- 批准号:
545733-2020 - 财政年份:2020
- 资助金额:
$ 0.51万 - 项目类别:
Postdoctoral Fellowships
The local trace formula as a motivic construction
作为动机构造的局部迹公式
- 批准号:
519125-2018 - 财政年份:2020
- 资助金额:
$ 0.51万 - 项目类别:
Postgraduate Scholarships - Doctoral
Beyond Endoscopy and the stable trace formula
超越内窥镜检查和稳定的痕量公式
- 批准号:
RGPIN-2020-04547 - 财政年份:2020
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2020
- 资助金额:
$ 0.51万 - 项目类别:
Discovery Grants Program - Individual