ジョルダン代数のゼ-ヌ関数と保型形式の次元

Jordan 代数的 Zene 函数和自守形式的维数

基本信息

  • 批准号:
    07210252
  • 负责人:
  • 金额:
    $ 0.51万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 无数据
  • 项目状态:
    已结题

项目摘要

1.本年度は、対称行列のなすJordan algebra内のconeのゼータ関数として、重さk(整数)の次数nのSiegel Eisenstein級数 E^n_k(Z)に付随するKoecher Maassのディリクレ級数L(s,E^n_k(Z))(E^n_k(Z)のMellin変換で得られるゼータ関数)を取り上げた。今年度のこの研究における主定理として、任意のnに対して、L(s,E_n^κの完全に具体的な公式を得た。このゼータ関数の具体型はn=1は古典的によく知られている。また、n=2はフーリエ係数のMaassによる公式から、Boechererが導いている。しかし、一般の公式は予想等もこめても、全くなにも知られていなかった。結論は、多くの専門家の思いこみに反して、いたって単純な形に記述される。すなわち、nが奇数ならリーマンゼータ関数の平行移動の積の2つの線形結合になり、またnが偶数なら、重さ半整数の2つの1変数Eisenstein級数のMellin変換のconvolution productとリーマンゼータの平行移動の積、およびリーマンゼータの平行移動の積の2つのディリクレ級数の和になる。(以上桂田英典氏との共同研究による。)以上の結果の要約は数理解析研究所講究録に掲載予定。また、英文論文は準備中。保型形式の次元公式のために使用する、概均質ベクトル空間のゼータ関数と跡公式の核関数の間の関数等式、および次元公式の寄与への関係についての研究者の成果を数理解析研究所講究録に公表した。
1. In this year, the Siegel Eisenstein series E^n_k(Z) of the number n of cone in Jordan algebra (E^n_k (Z))(E ^n_k (Z) of Mellin transformation) is selected. In this paper, the main theorem, arbitrary n pairs, L(s,E_n^κ) and completely concrete formulas are obtained. The number of specific types of n=1 and classical n=1 are known as n=1 and n = 1 respectively. , n=2 The general formula is to wait for the answer, and the whole thing is to know it. The conclusion is that there are many ways to describe the relationship between the two countries. The linear combination of 2 sets of products of parallel movements of odd numbers, n sets of even numbers, n sets of weights of 2 sets of 1 sets of Eisenstein series of Mellin transformations of convolution products of parallel movements, n sets of products of parallel movements, n sets of even numbers, n sets of weights of 2 sets of linear combinations of products of parallel movements, n sets of even numbers, n sets of weights of 2 sets of linear combinations of products of parallel movements, n sets of even numbers, n sets of even numbers, n sets of weights of 1 sets of Eisenstein series of Mellin transformations of convolution products of parallel movements, n sets of even numbers, n sets of even numbers, n sets of products of parallel movements, n sets of 2 sets of linear combinations of products of 2 sets of product of parallel movements, n sets of even numbers, n sets of even numbers, n sets of weights of 1 sets of weights of 1 sets of 1 sets of Eisenstein series of Mellin transformations of convolution products of 2 sets of products of parallel movements, n sets of 1 sets of even numbers, n sets of even numbers of 1 (The above joint research by Katsuda Hidenori.) The above results are presented in the journal of the Institute of Mathematical Analysis. English papers are being prepared. The results of the researchers in the field of mathematical analysis and research on the relationship between the dimensional formula of the type preserving form and the relationship between the dimensional formula and the trace formula are recorded in the table.

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
伊吹山 知義: "An explict for uia for qctu ctionsa vedo spece" 京都大学数理解析研究所講究録. 924. 88-101 (1995)
Tomoyoshi Ibukiyama:“An Explict for uia for qctu ctionsa vedo spece”京都大学数学分析研究所 Kokyuroku。 924. 88-101 (1995)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Ibukiyama: "On qeta functions anociated to Symmetvic matricas I" Amer,J.Math.117. 1097-1155 (1995)
T.Ibukiyama:“论与对称矩阵 I 相关的 qeta 函数”Amer,J.Math.117。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
伊吹山 知義: "On clim ensis of antonaplic from and qeto simctions of prehonoochors vedr space" 京都大学数理解析研究所講究録. 924. 127-133 (1995)
Tomoyoshi Ibukiyama:“On clim ensis of antonaplic from and qeto simctions of prehonochors vedr space” 京都大学数学科学研究所 Kokyuroku. 924. 127-133 (1995)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

伊吹山 知義其他文献

Application of Modular Forms to Lattices
模形式在格中的应用
Quadratic mappings over(GO(p, q) , R^p+q) and functional Equations
(GO(p, q) , R^p q) 和函数方程的二次映射
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;木村 達雄;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato
  • 通讯作者:
    Fumihiro Sato
局所密度の一次独立性とその保型形式の数論への応用
局域密度线性无关及其自守形式在数论中的应用
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;木村 達雄;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;広中 由美子
  • 通讯作者:
    広中 由美子
On the functional equations of shpherical functions on certain spherical homogeneous space
关于某球齐次空间上球函数的泛函方程
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;木村 達雄;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;広中 由美子;Yumiko Hironaka;佐藤 文広;Fumihiro Sato;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;Fumihiro Sato;広中 由美子;Yumiko Hironaka;広中 由美子;Yumiko Hironaka;佐藤 文広;Fumihiro Sato;広中 由美子;Yumiko Hironaka;広中 由美子;Yumiko Hironaka;佐藤 文広;Fumihiro Sato;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;Yumiko Hironaka;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;Yumiko Hironaka
  • 通讯作者:
    Yumiko Hironaka
二次写像による関数等式の遺伝と非概均質的関数等式
通过二次映射和非近似齐次函数方程继承函数方程
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoyoshi Ibukiyama;Hidenori Katsurada;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広;佐藤 文広;伊吹山 知義;Tomoyoshi Ibukiyama;佐藤 文広;佐藤 文広;Fumihiro Sato;広中 由美子;伊吹山 知義;Tomoyoshi Ibukiyama;広中 由美子;広中 由美子;Yumiko Hironaka;木村 達雄;Tatsuo Kimura;佐藤 文広
  • 通讯作者:
    佐藤 文広

伊吹山 知義的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('伊吹山 知義', 18)}}的其他基金

Algebraic study of L functions of modular forms of several variables and differential operators
多变量模形式的L函数和微分算子的代数研究
  • 批准号:
    23K03031
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Siegel modular forms and algebraic modular forms
西格尔模形式和代数模形式
  • 批准号:
    19K03424
  • 财政年份:
    2019
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
中間ウェイトのジーゲル保型形式の研究
中等重量西格尔固定形式的研究
  • 批准号:
    18654003
  • 财政年份:
    2006
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
ベクトル値ジーゲル保型形式のなすテンソル環の研究
向量值Siegel模形式形成的张量环的研究
  • 批准号:
    14654007
  • 财政年份:
    2002
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
Koecher Maass級数と保型形式のリフティング
Koecher Maass 级数和自守形式的提升
  • 批准号:
    11874005
  • 财政年份:
    1999
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
一般ジーゲル公式とゼータ関数
一般西格尔公式和 zeta 函数
  • 批准号:
    09874007
  • 财政年份:
    1997
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
Maass Koecher Seriesの研究
Maass Koecher级数研究
  • 批准号:
    08874001
  • 财政年份:
    1996
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
保型形式とオイラー積の和としてのゼータ関数
Zeta 函数为自守形式与欧拉积之和
  • 批准号:
    07804002
  • 财政年份:
    1995
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
保型形式の次元公式
自守形式的维数公式
  • 批准号:
    06640042
  • 财政年份:
    1994
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
概均質ベクトル空間と保型形式
近似齐次向量空间和自同构形式
  • 批准号:
    05804002
  • 财政年份:
    1993
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

保型形式の周期の非消滅定理と漸近公式の研究
自守形式周期不消失定理和渐近公式的研究
  • 批准号:
    23K20785
  • 财政年份:
    2024
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Drinfeld保型形式の傾斜に関するP進的手法の推進
推广 Drinfeld 自守形式梯度的 P-adic 方法
  • 批准号:
    23K03078
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
保型形式による同変玉河数予想解決への戦略
使用自守形式求解等变玉川数猜想的策略
  • 批准号:
    23K12961
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
保型形式の周期とp進L関数
自守形式和 p 进 L 函数的周期
  • 批准号:
    23K03055
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
保型形式を用いた同変玉河数予想解決への新戦略
使用自守形式求解等变玉川数猜想的新策略
  • 批准号:
    23KJ1943
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
対合付き正則シンプレクティック多様体の解析的捩率を用いた保型形式の構成
使用成对正则辛流形的解析挠率构造自守形式
  • 批准号:
    23KJ1249
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
保型L函数の特殊値と保型形式の周期の研究
自同构L函数的特殊值和自同构形式的循环的研究
  • 批准号:
    22K03235
  • 财政年份:
    2022
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
保型L関数の特殊値と保型形式の周期に関する研究
自同构L函数的特殊值和自同构周期的研究
  • 批准号:
    22K13891
  • 财政年份:
    2022
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
K3曲面の周期と鏡映群の不変式による保型形式の研究
利用K3面周期性和反射群不变公式研究自守形式
  • 批准号:
    22K03226
  • 财政年份:
    2022
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
保型形式の特殊値の数論的研究とその応用
自同构特殊值的数论研究及其应用
  • 批准号:
    22K03263
  • 财政年份:
    2022
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了