フロベニウス-セシャドリ定数の研究

Frobenius-Seshadri常数的研究

基本信息

  • 批准号:
    14J01881
  • 负责人:
  • 金额:
    $ 2.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2014
  • 资助国家:
    日本
  • 起止时间:
    2014-04-25 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

当該年度はフロベニウス-セシャドリ定数の数値的な定義や具体的に計算,評価する方法について研究を行った.しかしながら思うような進展が得られず,残念ながら論文にまとめられるような結果を得ることができなかった.その一方,そこから派生した研究として以下のような成果が得られた.古川勝久氏との共同研究:まず前年度のうちにある程度完成していた,トーリック多様体の双対多様体の次元に関する組合せ的記述をプレプリントにまとめた.また通常のガウス写像の一般化である高次ガウス写像についても研究した.分離的な場合の一般ファイバーの線形性などを証明し,プレプリントにまとめた.井上大輔氏,三浦真人氏との共同研究:グラスマン多様体上の同変ベクトル束の零点として得られる 3 次元カラビ-ヤウ多様体について,その同型類やトーリック退化などをミラー対称性の観点などから調べた.そのようにして得られる3次元カラビ-ヤウ多様体を分類し,また得られた多様体の I 関数を計算しプレプリントにまとめた.三浦真人氏,大川新之介氏,植田一石氏との共同研究:G_2型の等質空間上の同変ベクトル束の零点 として得られるカラビ-ヤウ多様体を分類した.その分類で現れた2種類の3次元カラビ-ヤウ多様体が,グロタンディーク環の中で興味深い関係にあることを示した.また次数 12 の K3 曲面についても同様の関係が成り立つことを示した.これらの結果もプレプリントにまとめた.
During the year, the specific calculation of the definition of the fixed number of figures was completed, and the method was used to study the progress of the study. the results show that there is a difference between the two sides of the year. The following research results have been obtained. Kushiro Furukawa's joint study: the degree of completion of the previous year. An account of the combination of multi-body and multi-body images in two dimensions. Usually, it is written as "general", "high-order", "portrait", "research", "separated", "general", "general", "" shape, "" I "," Mr. Inoue. " Miura real-time co-study: we can get the same number of data on the same body. At zero point, we can get the data of the same type. We have the same type of data, and we have a lot of data. This is a joint study of the real Miura, Keiji Ogawa, and Shigeru Ishida. The joint study of the same cluster bundles in the space of type G2, such as G2, has been classified into three categories, namely, the third order, the third order, and the third dimension. There is a deep smell in the environment. The number of times is 12. K3, the curved surface is the same as the environment. The results show that the temperature is not valid.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The 2nd Higher dimensional algebraic geometry Echigo Yuzawa symposium
第二届高维代数几何越后汤泽研讨会
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nakayama;R.;Motoyoshi;I.;and Sato;T.;Atsushi Ito
  • 通讯作者:
    Atsushi Ito
Atsushi Ito
伊藤敦志
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Gauss maps of toric varieties
  • DOI:
    10.2748/tmj/1505181625
  • 发表时间:
    2014-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Katsuhisa Furukawa;Atsushi Ito
  • 通讯作者:
    Katsuhisa Furukawa;Atsushi Ito
On Gauss maps in positive characteristics
在正特性的高斯图上
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伊藤 敦
  • 通讯作者:
    伊藤 敦
Remark on higher syzygies on abelian surfaces
关于阿贝尔曲面上更高 syzygies 的评论
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nakayama;R.;Motoyoshi;I.;and Sato;T.;Atsushi Ito
  • 通讯作者:
    Atsushi Ito
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

伊藤 敦其他文献

On absorbing set of states and learning rates in self-organizing maps
关于自组织映射中吸收状态集和学习率
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伊藤 敦;百生 敦;渡辺雅二,河合富佐子 (口頭発表者:渡辺雅二);種市信裕・関谷祐里・外山淳;星野満博;税所 康正;Mitsuhiro Hoshino
  • 通讯作者:
    Mitsuhiro Hoshino
生体試料の軟X線スペクトロスコピー
生物样品的软 X 射线光谱
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masaji Watanabe;Fusako Kawai (口頭発表者:Masaji Watanabe);伊藤 敦
  • 通讯作者:
    伊藤 敦
可変学習率をもつ一般入力型自己組織化マップについて
关于通用输入型可变学习率自组织映射
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masaji Watanabe;Fusako Kawai (口頭発表者:Masaji Watanabe);伊藤 敦;星野満博
  • 通讯作者:
    星野満博
STXM-CTによる3次元化学状態分析法の開発
使用STXM-CT开发3D化学状态分析方法
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    大東 琢治;稲垣 裕一;伊藤 敦;篠原 邦夫;小杉 信博
  • 通讯作者:
    小杉 信博
On a closed class of states and an estimation of its formative process in basic SOM
基本 SOM 中状态的封闭类及其形成过程的估计
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    平山 亮一;伊藤 敦;安藤 興一;古澤 佳也;Mitsuhiro Hoshino
  • 通讯作者:
    Mitsuhiro Hoshino

伊藤 敦的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('伊藤 敦', 18)}}的其他基金

代数多様体上の直線束の正値性に関する研究
代数簇的线丛正值研究
  • 批准号:
    21K03201
  • 财政年份:
    2021
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
低医療費と良質な医療提供の実現に向けたプライマリ・ケアの機能強化方法に関する研究
如何强化基层医疗功能实现低医疗成本、高质量医疗的研究
  • 批准号:
    18K12831
  • 财政年份:
    2018
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
トーリック多様体の双対欠損の組合せ論的記述に関する研究
复曲面流形对偶赤字的组合描述研究
  • 批准号:
    17K14162
  • 财政年份:
    2017
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
森夢空間の具体例について
关于森梦空间的具体事例
  • 批准号:
    25887010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
偏曲代数多様体におけるセシャドリ定数の研究
极化代数簇中Seshadri常数的研究
  • 批准号:
    11J56182
  • 财政年份:
    2011
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
太陽光紫外線領域(290-400nm)における哺乳動物細胞内活性酸素生成の解析
太阳紫外线范围(290-400nm)哺乳动物细胞活性氧产生的分析
  • 批准号:
    03858059
  • 财政年份:
    1991
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

カラビ・ヤウ多様体の錐予想について
关于Calabi-Yau流形的锥猜想
  • 批准号:
    21J10242
  • 财政年份:
    2021
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
カラビ・ヤウ多様体の変形空間とミラー対称性
Calabi-Yau流形的变形空间和镜像对称性
  • 批准号:
    20K03593
  • 财政年份:
    2020
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
滑らかなカラビ・ヤウ多様体上のヘテロ型弦理論における素粒子現象論
光滑 Calabi-Yau 流形上异质弦理论中的粒子现象学
  • 批准号:
    19J00664
  • 财政年份:
    2019
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ガウス・マニン系の無限遠における漸近展開と数論的カラビ・ヤウ多様体
高斯-马宁系统的无穷远渐近展开与算术卡拉比-丘流形
  • 批准号:
    16654004
  • 财政年份:
    2004
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
正標数の高次元カラビ・ヤウ多様体の研究
高维正特征Calabi-Yau流形的研究
  • 批准号:
    15654002
  • 财政年份:
    2003
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
カラビ・ヤウ多様体の解析的トーション
Calabi-Yau 流形的解析挠率
  • 批准号:
    14740035
  • 财政年份:
    2002
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
モ-デル=ベイユ格子とカラビ=ヤウ多様体のミラー対称性予想
模型-Weil 格子和 Calabi-Yau 流形的镜像对称猜想
  • 批准号:
    08211232
  • 财政年份:
    1996
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
3次元カラビ-ヤウ多様体の研究
3D Calabi-Yau 流形的研究
  • 批准号:
    07210229
  • 财政年份:
    1995
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
3次元カラビ-ヤウ多様体の代数幾何学的研究
3维Calabi-Yau流形的代数几何研究
  • 批准号:
    07740013
  • 财政年份:
    1995
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了