弱双曲型偏微分方程式及び系の解の構造

弱双曲偏微分方程和系统解的结构

基本信息

  • 批准号:
    07640203
  • 负责人:
  • 金额:
    $ 0.45万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 无数据
  • 项目状态:
    已结题

项目摘要

1.重複特性根をもつ双曲型作用素(大矢)2.偏微分作用素としてみたSchrodinger作用素(大矢・多羅間)3.偏微分作用素としてみた分散型(Korteweg-de Vries)作用素(多羅間)在来は、2)は主として作用素論の立場で3)は非線型問題としてP. D. Lax等による興味深い性質が示されてきた。上記を線型偏微分作用素としてみた時、最も素朴にEnergy不等式を導いても解の性質を反映する情報は得られない。実際、1)については、E. E. Levi条件2)についてはgauge変換に関わる適当な条件を与える必要がある。加えて単にEnergy不等式を得るという観点からでは2)と3)には強い類似性が見られる。初期値問題がC^∞級関数の枠で適切であることにより双曲性を決定する(特徴付ける)問題は、多くの研究者の興味を引いている。ここ20年ほどの研究代表者等の成果は本質的に変数係数に対しては、顕著な結果を与えているが、定数係数との関連迄こめて考えると、未だ難しい問題が多く残されていると言わざるを得ない。例えば重複度一定の極めて簡単な作用素であるに係わらず、低階として楕円形作用素を付加したとき適切になることが判っている。猶 研究方法は同じであるが最近P. D′Ancona-S. Spagnoloにより非線型初期値問題の大域解の存在問題に対して作用素に双曲性を仮定するとき大域解の存在時間を係数に解析性を仮定すれば評価可能であることか示されている。即ち、係数の解析性は仮定するが双曲性が如何なる主張をするか知ろうとするわけである。著者達はFourier変換を使う為、空間変数には依存しないとの条件を課しているがこの除去に目的をしぼっている。
1. 2. Partial differential actors.3. Partial differential actors.2. Partial differential actors.3. Partial differential actors.3. Partial differential actors.2. Partial differential actors.3. Partial differential actors.3. Partial differential actors.4. D. Lax, etc. are interesting and deep in nature. Note that linear partial differential action is the most simple Energy inequality, and the property of the solution is reflected. 1), E. E. Levi condition 2) appropriate condition and necessary condition Add Energy inequality to get The initial problem is C^∞-related and appropriate. In the past 20 years, the achievements of the research representatives have changed from the nature of the coefficient to the nature of the coefficient. The results have changed from the nature of the coefficient to the nature of the coefficient. The problems have changed from the nature of the coefficient to the nature of the coefficient. For example, the degree of repetition is constant, and the action element of low order is appropriate. The research method is the same as that of P. D′Ancona-S. Spagnolo: existence of a large domain solution for a nonlinear initial problem; hyperbolic properties; analytic properties; and evaluation of possible solutions. That is, the analytical properties of the coefficients are determined. The author reaches the Fourier transformation, the spatial transformation and the spatial transformation.

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shigeo TARAMA: "On the wellposed Cauchy problem for some dispersive equations" J. Math. Soc. Japan. 47. 143-158 (1995)
Shigeo TARAMA:“关于某些色散方程的适定柯西问题”J. Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shigeo TARAMA: "On the second order hyperbolic equations degenerating in the infinite order. -example-" Math. Japonica. 42. 523-534 (1995)
Shigeo TARAMA:“关于无限阶退化的二阶双曲方程。-示例-”数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
大矢勇次郎: "応用数学の基礎" 昭晃堂, 156 (1996)
Yujiro Oya:《应用数学基础》 Shokodo,156 (1996)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

大矢 勇次郎其他文献

大矢 勇次郎的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('大矢 勇次郎', 18)}}的其他基金

弱双曲型偏微分方程式及び系の解の構造
弱双曲偏微分方程和系统解的结构
  • 批准号:
    05640178
  • 财政年份:
    1993
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
弱双曲型偏と微分方程式及び系の解の構造
微分方程的弱双曲偏项和结构以及系统的解
  • 批准号:
    04640153
  • 财政年份:
    1992
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
弱双曲型偏微分方程式及び系の解の構造
弱双曲偏微分方程和系统解的结构
  • 批准号:
    03640146
  • 财政年份:
    1991
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
弱双曲型偏微分方程式及び系の解の構造
弱双曲偏微分方程和系统解的结构
  • 批准号:
    02640114
  • 财政年份:
    1990
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
弱双曲型偏微分方程式及び素の解の構造
弱双曲偏微分方程的结构和初等解
  • 批准号:
    01540124
  • 财政年份:
    1989
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
弱双曲型偏微分方程式及び系の解の構造
弱双曲偏微分方程和系统解的结构
  • 批准号:
    63540116
  • 财政年份:
    1988
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
弱双曲型偏微分方程式及び系の解の構造
弱双曲偏微分方程和系统解的结构
  • 批准号:
    62540109
  • 财政年份:
    1987
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
弱双曲型偏微分方程式及び系の解の構造
弱双曲偏微分方程和系统解的结构
  • 批准号:
    61540102
  • 财政年份:
    1986
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
弱双曲型偏微分方程式及び系の解の構造
弱双曲偏微分方程和系统解的结构
  • 批准号:
    60540104
  • 财政年份:
    1985
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
弱双曲型偏微分方程式及び系の解の構造
弱双曲偏微分方程和系统解的结构
  • 批准号:
    59540079
  • 财政年份:
    1984
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

制限定理と非線形分散型方程式の初期値問題の研究
非线性分布方程极限定理与初值问题研究
  • 批准号:
    22KJ0446
  • 财政年份:
    2023
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
楕円型方程式の初期値問題を例とした逆問題の数値的手法の見直し
以椭圆方程初值问题为例回顾反问题的数值方法
  • 批准号:
    22K18674
  • 财政年份:
    2022
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
速く増大する非線形項を持つ非整数階反応拡散方程式の初期値問題
非线性项快速增加的分数阶反应扩散方程的初值问题
  • 批准号:
    20J11985
  • 财政年份:
    2020
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
コロンボの理論を用いた不連続な係数を持つ波動方程式に対する初期値問題の研究
基于科伦坡理论的不连续系数波动方程初值问题研究
  • 批准号:
    20K03694
  • 财政年份:
    2020
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Relationship between initial conditions and global solvability in initial value problem of nonlinear Schrödinger equations
非线性Schr初值问题初始条件与全局可解性的关系
  • 批准号:
    19K14570
  • 财政年份:
    2019
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
分散効果を伴う粘性保存則に対する初期値問題の時間大域解の第2漸近形の構成
具有色散效应的粘度守恒定律初值问题时间全局解的第二渐近形式的构造
  • 批准号:
    18J12340
  • 财政年份:
    2018
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形分散型方程式の代数的構造と初期値問題の適切性
非线性分布方程的代数结构及初值问题的适当性
  • 批准号:
    17K05316
  • 财政年份:
    2017
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形分散型方程式の初期値問題の研究
非线性分布方程初值问题研究
  • 批准号:
    16J11453
  • 财政年份:
    2016
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Developments in Geometric Analysis of the initial value problem for dispersive flow equation
弥散流方程初值问题的几何分析进展
  • 批准号:
    16K05235
  • 财政年份:
    2016
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形分散型方程式の初期値問題の研究
非线性分布方程初值问题研究
  • 批准号:
    15J07897
  • 财政年份:
    2015
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了